BIHANG

TILL

KONGL. SVENSKA VETENSKAPS-AKADEMIENS HANDLINGAR.

SJUTTONDE BANDET.

AFDELNING IV.

ZOOLOGI, OMFATTANDE BÅDE LEFVANDE OCH FOSSILA FORMER.

STOCKHOLM, 1892. P. A. NORSTEDT & SÖNER.
INNEHÅLL AF SJUTTONDE BANDET.

Afdelning IV.
(Zoologi, omfattande både levande och fossila former).

Sid.

3. MALME, G. O. Studien über das Gehirn der Knochenfische. Mit 5 Tafeln ... 1—60.

5. HOLMGREN, E. Bidrag till kännedomen om de skandinaviska foglarnes osteologi. Med 9 taflor 1—135.

6. LÖNNBERG, E. Öfversigt öfver Sveriges Cephalopoder. Med 1 tafla... ... 1—42.

8. SCHÖTT, H. Beiträge zur Kenntniss Kalifornischer Collembola, Mit 4 Tafeln.. 1—25.

9. THORELL, T. On an apparently new Arachnid belonging to the family Cryptostemmoidæ, Westw. 1—18.

10. BORGSTRÖM, E. Über Echinorhynchus turbinella, brevicollis und portigens. Mit 5 Tafeln.. 1—60.

62507
KURZER BERICHT

ÜBER

EINE IM SOMMER D. J. 1890 UNTERNOMMENE

ZOOLOGISCHE REISE

NACH

NORD-GRÖNLAND

VON

D. BERGENDAL.

MITGETHEILT DEN 14 JANUAR 1891 DURCH S. LOVÉN.

STOCKHOLM, 1891.
KONGL. BOKTRYCKERIET. P. A. NORSTEDT & SÖNER.

Obgleich es nicht meine Absicht ist hier etwas über die allgemeineren Naturverhältnisse Grönlands zu schreiben, will ich mir jedoch jetzt einen kleinen Ausflug erlauben.

Man hört oft auch in Grönland, dass die Schneehühner im Sommer nicht auf den äusseren Inseln, und überhaupt nicht in der Nähe des Meeres vorkämen. Diese Auffassung scheint mir nicht ganz richtig. Es ist wahr, in der Nähe der Kolonien sieht man wohl sehr selten einige Schneehühner, aber während dieser Reise nach Egedesminde, die fast ausschliesslich zwischen den äussersten Inselchen ging, sahen wir überall, sogar aussen vor der Mündung des Ailaitsivikfjords, viele Schneehühner, und auf einem kleinen Spaziergang konnten manchmal mehrere geschossen werden.

Eben des oben genannten reichen Fanges wegen war es Anfangs nicht leicht Besatzungen für die Boote zu erhalten. So hörte ich eine charakteristische Antwort, welche dem

1 Auf Bootreisen in Grönland hat man bekanntlich oft unvorge sehener Umstände wegen einen gewandten Kajakruderer mit sich, der an der Seite des umiaks oder der Schaluppe fährt, und verschiedene Dienste verrichtet, weil er so viel schneller rudern kann. So holt er Wasser, fährt zurück nach vergessenem Sachen etc.

Von Ritenbenk aus trat ich mit der Barke Ceres d. 6. September die Reise nach Hause an. Obgleich die Entfernung von Ritenbenk bis Kopenhagen viel länger als von Kopenhagen bis Holsteinborg ist, wurde die Reise in weniger als der halben Zeit, welche für die Hinreise erforderlich war, zurückgelegt. Sowohl Thorwaldsen wie Ceres waren schnell segelnde, gut eingerichtete Schiffe, welche dem dänischen Staate gehören.

Im Anfang des Juni war das Meer einige Meilen von der Küste Grönlands des Abends strotzend voll von Jugendstadien, Ephyren, der dort vorkommenden Arten der Gat-

D. BERGENDAL, ZOOLOGISCHE REISE NACH NORD-GRÖNLAND.

das könnte möglicherweise einer Notiz werth sein, dass in der Mitte des Juli eine braune Mysisart die oberen Schichten des Meeres fast ganz erfüllte. Dieselbe konnte denn plötzlich ganz verschwinden um nach einem oder einigen Tagen wieder in denselben grossen Mengen aufzutreten. Später im Sommer wurde diese Art nicht so massenhaft gesehen.

Ich denke mir dass diese Jugendform der _Cucumaria frondosa_ gehört, welche ja im grönländischen Meere ausserordentlich häufig ist. Wie gemein diese Art ist geht schon daraus hervor, dass wir, auf der Hinreise Nebels wegen draussen von Holsteinborg verankert, einen Tag den grossen Heilbutt zu fischen versuchten, diesen freilich nicht erhielten aber in dessen Stelle grosse Mengen von Cucumaria frondosa,
mit den Angeln aufgezogen, mitunter in einem Zuge drei bis vier große Exemplare, die an einander fest hielten. Es war noch nicht die richtige Zeit für das Heilbuttsfischen. Auf der Rückreise wurden auf derselben Stelle in einigen Minuten vier riesenhafte Heilbutte aufgezogen.

Die Rhabdocoelen sind dagegen viel zahlreicher. Dieselben sind aber von Levinsen während seines mehr als zwei jährigen Aufenthalts in Egedesminde beobachtet und be-

Chasmocephala cordiceps war schon von Levinson gefunden.

Indessen schienen unsere Exemplare nicht vollständig übereinstimmend zu sein, denn ich konnte nur die bei den Hoplonemertinen normalen zwei Stylsäcke auflinden und vermisste auch die schwarzen Flecken, welche sich pro acervis oculorum an Levinsons Exemplaren vorfanden. Auch stimmten die Kopffurchen nicht ganz mit den Sarssschen Zeichnungen überein. Ich glaube nach meinen Untersuchungen, die bisher nur an dem lebenden Thier gemacht worden sind, dass diese Art in die Gattung Amphiporus übergeführt werden darf. Hierüber werden die in Sublimat, Sublimatalkohol und einer Mischung von Pikrinsalzsäure, Alkohol und Kochsalzlösung fixirten Exemplare mir gewiss auf Untersuchungen

Von Schnittserien gestützte Angaben in der Zukunft zu veröffentlichen erlauben.

Von den anderen gesammelten Meeresthieren will ich hier zwei erwähnen. Das eine ist ein großer Balanoglossus, der sehr gewöhnlich bei Egedesminde im Lehmboden zusammen mit grossen um 20 cm. langen Chirodota levis vor­kam. Derselbe war weisslich oder gelbroth, ist aber noch nicht näher untersucht worden. Das andere ist Chetoderma nitidulum, das ich in der Nähe von Jakobshavns Eisfjord im Lehmboden fand.

In Jakobshavn kann man in Folge der Nähe des Eis­fjordes gewöhnlich zu jeder Jahreszeit Seehunde bekommen. Bei meinem dortigen Aufenthalt hinderten indessen Stürme so sehr den Fang, dass ich nur eine jüngere Phoca groenlandica untersuchen konnte. Ausser einigen Nematoden oder Echinorhynchen 1 zeigte dieselbe keine Parasiten.

In den meisten Fällen werden diese Haje nicht von den Fängern nach Hause geführt, sondern draussen im Meere aufgeschnitten und die Leber herausgenommen.² Sein Fleisch schätzen die Grönländer nicht. Dasjenige des für meine Rechnung nach der Kolonie geschleppten Thieres wurde mit seltener Freigehigkeit für die Hunde hie und da hin gelegt, und sogar diese zuweilen alte Kajake fressenden Thiere liessen das Hajfleisch verschiedene Tage liegen ehe sie es ganz verzehrt, was um so merkwürdiger war, als die Hunde dieser Familie nicht weniger als vierzig waren. Ich habe

¹ Es ist übergens wohl bekannt, dass die Haje sehr oft freiwillig in den oberen Wasserschichten schwimmen.
² Die meisten Haje werden im Winter, als das Meer mit Eis belegt ist, gefangen. Auch dann soll gewöhnlich nur die Leber nach Hause geführt werden.

In Jakobshavn werden die Hunde zum grossen Theil mit »balleralik« (Hippoglossus hippoglossoides Walbaum) gefüttert. Dieser Fisch kommt ausserordentlich häufig auf den Bänken und in der Mündung des tiefen Eisfjords vor, und eben dieses veranlasst den grossen Reichthum an Hagen bei Jakobshavn. Der von mir aufgeschrittene Haj hatte noch einen grossen solchen Fisch ganz frisch im Magen, neben anderen mehr verdauten.

Von Suctorien sah ich nur Acineta.

Im Meere sah ich ausser einigen hier schon genannten Gattungen auch Vertreter der Gattungen Styloplotes, Uronychia, Trachelocerea und Tintinnus. Von den Flagellaten sah ich ausser den Volvacineen viele Formen, konnte aber

1 Ich benutzte bei meinen Studien dieser Formen hauptsächlich BÜTSCHLIS Artersstellung in Bronus Klassen und Ordnungen. Hier folge ich jetzt jedoch der älteren Systematik bei der Aufzählung der Gattungen.
nur wenige genauer untersuchen und gebe deshalb hier allen vorüber.

So gebe ich weiter hier einige kurze Notizen über andere im den süßen Wässerne Grönlands gefundene Thiere.

Süßwassergastropoden sah ich nicht, was wohl darin seinen Grund hatte, dass ich meine meisten Untersuchungen in unmittelbarer Nähe der Kolonien vornahm und nie Zeit finden konnte längere Landexkursionen zu machen. Auf einem Inselchen um 4 Meile nördlich von Holsteinborg wurde Cyclas cornea beobachtet.

Der Mückenreichthum Grönlands ist leider gar zu bekannt um einer Erwähnung zu bedürfen. Wie die Mücken selbst Arbeiten in der freien Luft sehr erschweren können,
so sind die Mückenlarven bei Mikroskopischen Arbeiten mit Süßwasserthieren eine wirkliche Plage. Es ist mir mehrmals geschehen, dass, wenn ich in einer Probe ein interessantes Räderthier gefunden und eine Untersuchung desselben angefangen hatte, diese aufdringlichen Unruhestifter alles verschoben und meine Arbeit halb vollendet abbrachen. Es ist freilich sehr gut kleine Thiere zu isolieren, aber ein Jeder, welcher solche Studien selbst getrieben hat, kennt aus bitterer Erfahrung die dabei unumgängliche Folge, dass dann und wann eine Form verloren geht, und ich kann in einigen Fällen nur die Mückenlarven, welche mich zu früh, ehe ich eine genügende Voruntersuchung vorgenommen hatte, zur Isolierung zwangen, für die unvollständige Beschreibung verantwortlich machen, welche ich von mehreren interessanten Formen geben muss. Bald lehrte ich Mückenlarven unter dem Präparirmikroskope zuerst wegzufliegen, aber sehr oft hatten sich jedoch einige kleinere unter den Moosblättern versteckt.

Auf einem anderen weiter nördlich gelegenen Inselchen war der eine von zwei solchen gleich gelegenen Moosgräben strotzend voll von Branchipus stagnalis. Im anderen sah ich keinen einzigen, und so öfter.

Um hier ein Beispiel von beschränkter Ausbreitung anzuführen will ich mittheilen das ich die Hydatina senta später in keiner einzigen Wassersammlung in Grönland beobachtete,
was mir, weil diese Art anderswo so gemein ist, sehr merkwürdig scheint. Es könnte möglicherweise die Nordgrenze dieser Art sein. Es könnte auch sein, dass diese Frühlingsform für dieses Jahr seinen Lebenszyklus so früh abschloss. Das letztere mag ich nicht gern glauben, denn bei den späteren feuchten Zeiten würde sie wohl dann wahrscheinlich wieder erschienen sein.

1 Sehr bald verlieren z. B. die Blätter der Birke und der Heidelbeere die grüne Farbe und werden röthlich.
In einem Falle kann ich jedoch die Angaben über das trockene Klima auch für diesen Sommer bestätigen. Wenn zwischen den Regentagen einen klarer warmer Tag kam, so konnte wenigstens im Anfang der Regenzeit jede Spur des heftigen Regens in sehr kurzer Zeit ganz schwinden und Alles war wieder trocken. Später fingen freilich viele Wasserreservoire an sich wieder zu füllen.

Das Wasser fliesst heftig von den Bergen ab und zieht zum Meere oder sinkt in die moosigen Ebenen, wo es, ohne eigentlich sichtbar zu sein, jedoch zurückbleibt, wie die überall in Nordgrönland vor sich gehende Torfbildung deutlich zeigt. Ganze Inselchen können durch eine mehr oder weniger sich erhöhende torfbildende Masse gebildet sein, wo man, merkwürdig genug, die Torfbildung noch fast an dem Rande des Meeres vor sich gehen sieht. In keinem anderen von mir besuchten Gegend habe ich jedoch so zahlreiche kleine Wasseransammlungen wie in Grönland gesehen.

Als weiterer Beleg für das feuchte Klima dieses Jahres kann angeführt werden, dass die Heidelbeeren, Myrtillus uliginosus, spät, und besonders in der Nähe von Egedesminde nur unvollständig reif wurden. Andererseits spricht, dass sie in Jakobshavn und Ritenbenk gut reiften, für die starke Kraft der zwischen den Regentagen einfallenden sonnigen Tage.

Wenn ich jetzt diesen vorläufigen Bericht schliesse, erlaube ich mir meinen aufrichtigen Dank sowohl der königl. Commission, die die allgemeinen Reisekosten trug, wie auch der
Museumsverwaltung und ganz besonders dem Herrn Prof. Dr. C. F. Lütken, mit welchem ich die Verhandlungen geführt habe, auszusprechen.

LUND im November 1890.
TETRAO BONASIOTETRIX BOGDANOW

BASTARD MELLAN ORRE OCH HJERPE
FUNNEN I SVERIGE.

AF

GUSTAF KOLTHOFF.

MED EN TAFLA.

MEDDELADT DEN 8 APRIL 1891 GENOM W. LILJEBORG.

STOCKHOLM 1891.
KONGL. BÖKTRYCKERIFÉRT. P. A. NORSTEDT & SÖNER.
Den märkliga för den svenska faunan nye fogen, som är föremål för denna uppsats, blev skjuten den 7 November 1890 vid Habo i Västergötland och förvarvades af Jönköpings museum, hvars föreståndare benäget lemnat mig exemplaret för beskrifning.

Redan en flygtig blick på det vackra och väl bibehållna exemplaret ställer utom allt tvifvel, att det är en hybrid af hjerpe och orre, starkt påminnande om den förra i färgteckningen och om den senare genom den karaktäristiskt klufna stjerten. Några få bastarder mellan hjerpe och orre äro förut kända och en sådan omnämndes för första gången af Dresser\(^1\) år 1876, dock utan någon beskrifning eller afbildning, men med följande anmärkning.

> I can only surmise that the present hybrid has been the result of a Hazel Cock which had failed in finding a mate, having paired with some Grey Hen met with during his solitary wanderings.\(^2\) Exemplaret uppgafs härstamma från Norge och tillhörde John Fowler Esq.

År 1884 beskref Bogdanow enligt A. B. Meyer ett hanexemplar af hjerporre under namnet Tetrao bonasiotetrix. Da jag ej haft tillgång till hans afhandling, kan jag ej närmare redogöra för den.

År 1887 utkom A. B. Meyers\(^2\) praktverk öfver de tyska Tetraoniderna och deras afarter; deri lemnar han en beskrifning och afbildning af det af Dresser omnämnda exemplaret af hjerporre och föreslår att benämna den Tetrao tetrix bonasio. Han citerar Dresser och Bogdanow och anför enligt Pleske 1)

att i Vetenskapsakademiens museum i S:t Petersburg finns 5 exemplar av denne hybrid, 2 hanar och 3 honor. Vidare om- talar han ett exemplar från Salzburg, hvilket dock ej blifvit tillvarataget.

Då det af Meyer beskrifna och afbildade exemplaret tycks afvika temligen betydligt från det af mig undersökta, lemmar jag här nedan en kortfattad beskrifning af detta senare, åtsöjd af figur. Möjlig kan denna beskrifning äfven i någon mån bidraga att fästa svenska jägares och naturforskares uppmärksamhet vid våra vilda hönsfoglars hybridisering, en sak, som väl behöves, då många intressanta frågor i afseende hårpa ännu vänta på sitt svar.

Hjerperre.

* Tetrao bonasiotetrix, Bogdanow.

Beskrifning. Näbbet är vida kraftigare och proportionsvis längre än hos hjerpen, svart till färgen. Dess längd från framkanten af näsborrarne till spetsen är betydligt större än ögats diameter (14:9 mm). De näbbroten betäckande fjädrarne äro svarta med brun och hvit vattning. På huvuderna sidan finnes just vid gränsen mellan näbbet och pannan en oregelbunden hvit fläck som fortsättes bakåt i ett smalt hvitt band till och under ögat. Hjessan är vattrad af svart och brun; fjädrarne äro nemligen svarta, med ett en till en och en half millimeter bredt, brunt brämt; de bakre fjädrarne äro längre än de främre, så att de visa mera af sin svarta yta och bildar en tofs som dock är mindre än hos hjerpen. På hjessans sidor ofvan ögonen äro

[1) Meyer säger (I. c. p. 91): »Rose schwach entwickelt; über derselben ein schmaler schwarzer Streif.» Ett sådant svart band finnes ej hos detta exemplar.]
fjädrarna gråbruna, med två svarta band över hvarje fjäder, hvilka band blifva otydligare på de bakre fjädrarna, så att de synas gråbruna med en fin svart vattning. Öfver ögonen finnes en stor röd fläck liknande orrtuppens, men något mindre. Bakom den nakna röda fläcken finnes en liten fläck af hvita fjädrar, såsom hos hjerpen, här och der kantad med svart. 1) Nackens fjädrar äro kantade af svart, brunt och grätt. Örontäckfjädrarna äro svarta med en svag skiftning i brunt, upptill äro de fint brunvattade. 2) Kinder, haka och strupe täckas af en stor svart fläck, med mycket svag violet glans; den sträcker sig från munviken under ögat och öfvergår baktill i de svartbruna örontäckfjädrarna. Således saknas helt och hållet det breda gulhvita tygelband som finnes hos hjerpen. Denna svarta fläck är på undra och bakre sidorna omgifven af ett, en half till en centimeter bredt hvitt band som slutar under örontäckfjädrarna.

Ögonen äro 9 mm. i diameter. Iris är mörkbrun. Det öfre ögonlocket är svart, det undre är hvitgult.

1) Meyer (I. e. p. 91): »Hinter dem Auge ein schwarzesämteter weißer Längsflech, hos vart exemplar finnes det endast obetydliga svarta prickar vid kanterna af den hvita fläcken, ungefär som hos hjerpen.

2) Meyer (I. e. p. 91): »Ohrdecken schwarzlich grangewellt.»

Stjerten ofvan fint grävattrad, med ett bredt svart band tvärs öfver, hvilket band dock liksom hos hjerpen saknas på de båda mellersta stjertpennorna och är bredast på de yttersta. Alla stjertpennorna äro i spetsen kantade med ett hvitt bräms, hvilket är bredast på de mellersta stjertpennorna och aftager så att det knappt är märkbart på de yttersta. Öfre stjerttäckarne fint vattra det grätt, svart och brunt, eller af alldeles samma färg som ryggen. De andre stjerttäcksfjådrarna, som vid basen äro svarta, äro till den yttre tredjedelen rent hvita; härigenom komma de att synas rent hvita. Benen grävattrad, tårna blygrä och klorna hornfärgade. Tårnas lameller väl utbildade. Fjäderbeklädnaden på tarserna sträcker sig såsom hos hjerpen ej fullt ned till foten, då den deremot hos orren går ned till foten och något ut på tärna.

Skelettet ofverensstämmer mera med orrens än med hjerpeens, i synnerhet i formen av crista sterni och i formen af furculans opariga utskjott. Här lemnas för jämförelses skull mått på atskilliga skelettdele af hjerporre, hjerpe och orre.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Bröstbenets totallängd</td>
<td>80 mm.</td>
<td>108 mm.</td>
<td>125 mm.</td>
</tr>
<tr>
<td>Bröstkammens längd</td>
<td>54</td>
<td>82</td>
<td>101</td>
</tr>
<tr>
<td>Bröstbenets bredd vid basen af proc. superior</td>
<td>24</td>
<td>34</td>
<td>40</td>
</tr>
<tr>
<td>Scapulans längd</td>
<td>51</td>
<td>71</td>
<td>82</td>
</tr>
<tr>
<td>Dess största bredd på mitten</td>
<td>4</td>
<td>6</td>
<td>6</td>
</tr>
<tr>
<td>Längd af ossa coracoidea</td>
<td>37</td>
<td>44,5</td>
<td>57</td>
</tr>
<tr>
<td>Deras största bredd nedtill</td>
<td>13</td>
<td>16,5</td>
<td>20</td>
</tr>
<tr>
<td>Furculans längd</td>
<td>48</td>
<td>63</td>
<td>68</td>
</tr>
<tr>
<td>Dess nedre opariga dels längd</td>
<td>18</td>
<td>22</td>
<td>23</td>
</tr>
<tr>
<td>Bäckenets längd</td>
<td>50</td>
<td>67</td>
<td>75</td>
</tr>
<tr>
<td>Dess bredd</td>
<td>44</td>
<td>55</td>
<td>65</td>
</tr>
</tbody>
</table>

1) Meyer (l. c. p. 92): »Basaltheile weiss, einen deutlichen, aber verdeckten Spiegel bildend.«
Följande tabell utvisar diverse mått av hjerporren jemförd med de af A. B. Meyer på Fowler's exemplar uppgifna, samt af orre och hjerpe.

<table>
<thead>
<tr>
<th></th>
<th>Hjerporre Σ</th>
<th>Orre Σ</th>
<th>Hjerpe Σ</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>A ¹)</td>
<td>B ²)</td>
<td></td>
</tr>
<tr>
<td>Millimeter</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Totallängd</td>
<td>430</td>
<td>-</td>
<td>355</td>
</tr>
<tr>
<td>Huvudets längd</td>
<td>65</td>
<td>-</td>
<td>70</td>
</tr>
<tr>
<td>Näbbets längd från roten</td>
<td>31</td>
<td>-</td>
<td>32</td>
</tr>
<tr>
<td></td>
<td>14</td>
<td>12,5</td>
<td>15</td>
</tr>
<tr>
<td></td>
<td>11</td>
<td>10,5</td>
<td>12</td>
</tr>
<tr>
<td></td>
<td>11</td>
<td>11</td>
<td>12</td>
</tr>
<tr>
<td>Bingens längd</td>
<td>205</td>
<td>221</td>
<td>245</td>
</tr>
<tr>
<td>Stjertens längd utom vingspetsarna</td>
<td>88</td>
<td>-</td>
<td>110</td>
</tr>
<tr>
<td>Mellersta stjertpennornas längd</td>
<td>118</td>
<td>125</td>
<td>110</td>
</tr>
<tr>
<td>Yttersta</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Afstånd från öfras stjerttäckjädrarna till spetsen af mellersta stjertpennorna</td>
<td>33</td>
<td>35</td>
<td>11</td>
</tr>
<tr>
<td>Afstånd från andra stjerttäckfjädrarna till spetsen af mellersta stjertpennorna</td>
<td>15</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Tarsens längd</td>
<td>45</td>
<td>39</td>
<td>52</td>
</tr>
<tr>
<td>Yttertåns längd (utan klo)</td>
<td>26</td>
<td>-</td>
<td>32</td>
</tr>
<tr>
<td></td>
<td>11</td>
<td>-</td>
<td>11</td>
</tr>
<tr>
<td>Mellantåns längd (utan klo)</td>
<td>41</td>
<td>38</td>
<td>41</td>
</tr>
<tr>
<td></td>
<td>13</td>
<td>13</td>
<td>16</td>
</tr>
<tr>
<td>Innertåns längd (utan klo)</td>
<td>25</td>
<td>-</td>
<td>32</td>
</tr>
<tr>
<td></td>
<td>11,5</td>
<td>-</td>
<td>12</td>
</tr>
<tr>
<td>Baktåns längd (utan klo)</td>
<td>11</td>
<td>8,5</td>
<td>13</td>
</tr>
<tr>
<td></td>
<td>7</td>
<td>8</td>
<td>8</td>
</tr>
<tr>
<td>Ögats dimmer</td>
<td>9</td>
<td>-</td>
<td>10</td>
</tr>
</tbody>
</table>

Mycket svårt torde det blifva att afgöra, huruvida denna bastard härstammar från orrtupp och hjerphöna eller från hjerptupp och orrhöna och jag kan ej finna något som tyder på, att fogeln till lefnadssättet närmast sig mer den ena än den andra af de båda arterna. Att den vistsats mycket i träden utvisar påtagligen fötternas utseende, men då orren och hjerpen

¹) A det här beskrifna exemplaret.
²) B Fowler's af A. B. Meyer beskrifna exemplar.
i detta fall föra ett liknande lefnadssätt, har man deraf ej någon ledning. För min del finner jag icke att den omständigheten, att en hjerphane och en orrhöna mera närma sig varandra till storleken än en orr topp och en hjerphöna, kan utgöra något skäl för antagandet att hjerporren skulle hårstamma från en hjerphane och en orrhöna. Snarare skulle jag, så länge ej några särskilda bevis i detta afseende föreliggja, vilja anse att förhållandet varit motsatt, och detta på den grund, att hanarne bland hönsfoglarne vanligen äro större än honorna och att det bland våra tama hönsfoglar synes möta svårigheter för en liten hane att befrukta en stor hona, då deremot en liten hona med lättet befuktas af den störste hane. Omöjligt bör det dock icke vara för en hjerphane att befukta en orrhöna, då skillnaden i storlek dem emellan ju ej är så synnerligen stor.

Ehuru jag såhanda i denna fråga ej kan komma till något bestämdt resultat angående denna bastard, torde det tillåtas mig att vid detta tillfälle yttra några ord om de andra hos oss funna hönsfogelbastarderna.

Beträffande rackelhanen tror man sig visserligen veta att denna uppkommer genom orrtuppons parning med tjäderhöna, i det man åtminstone funnit att tjäderhöner, som i fångenskap parat sig med orrtupper lagt befuktade ägg. Sävåt jag har mig bekant, har det dock aldrig lyckats, att få ungar af sådana ägg att lefva så länge, att man kunnat se om de i fullvuxet tillstånd verkligen likna rackelhönsen eller afvika från dem; och så länge detta ej skett kan man ju ej med säkerhet visa, att dessa ej uppkommit genom parning af tjäderupp och orrhöna. Återstår att utforska, hur förhållandet är med de andra hönsfogelbastarderna. Mig synes det temligen antagligt, att riporren är en afkomling af orrtupp och dalripphona. Hvilad som ger mig anledning till detta antagande är, att riporrens fötter tydligen utvisar, att han ej uppehåller sig i träden eller plägar sitt på träd, hvilket dels tärnas föga utbildade lameller och dels den stärka befjädringen på tärnas sidor och under foten utvisar, då denna befjädring, om fogeln vistades i träden, borde vara mera sliten och färgad af kåda. En annan sak som även talar för detta antagande är att riporren vanligen erhålls tillsammans med ripor. Haraf torde man med stor samolikhet kunna sluta att riporrens lefnadssätt mest närmar sig ripans och då man väl måste antaga att en hönsfogelbastards
lefnadsvanor i allmänhet mera bör närmare sig modrens än fadrens, alldenstund han under den första tiden af sin lefnad är beroende af modrens vård och måste följa henne, synes mig högst antagligt, att denne bastard är en afkomling af orrtupp och dalriphona.1) Frågan kan dock vara, om ej även en riphan kan para sig med en orrhöna, men i detta fall bör bastardens fötter hafva ett annat utseende.

På samma skäl, som jag nyss anfört för sannolikheten att riporren härstammar från orrtupp och dalriphona, måste jag även anse, att den förut af mig beskrifna bastarden mellan hjerpe och ripa2) härstammar från hjerphane och dalriphona. Denna bastard's fötter visa nämligen på det bestämdaste, att den aldrig lefvat i träd.3) Skillnaden i storlek mellan hjerphane och dalriphonan är ej heller så stor att häruti något bestämt hinder kan ligga för ett dylikt antagande

1) Beträffande orrtuppeng och dalriphonans inbördes storlek, vill jag endast anmärka att skillnaden här är vida mindre än mellan en gammal tjäderutupp och en tjäderhöna.
3) Ehuru tärnas lameller äro tydligt utbildade, tyder dock den starka fjäderklädnaden på, att här föreligger ett arf från fadren, ett arf som dock aldrig kommit till användning.
4) James A. Grieg, Bergens Museums Årsberctning 1889.
STUDIEN
ÜBER
DAS GEHIRN DER KNOCHENFISCHE.
VON
GUST. O. AN MALME.
MIT 5 TAFELN.
EINGEREICHT AM 13 MAI 1891 DURCH F. A. SMITT.

STOCKHOLM 1891.
KONGL. BOKTRYCKERIET. P. A. NORSTEDT & SÖNER.
Während der beiden letzten Decennien haben die Forscher, die die Anatomie des Fischgehirns untersucht, sich vorzugsweise mit dem feineren Bau und der Entwickelungsgeschichte beschäftigt. Das Studium der äusseren Form, die insbesondere unter den Grätenfischen bei verschiedenen Familien eine ganz verschiedene ist, hat man sehr vernachlässigt. Noch geringere Aufmerksamkeit ist der Frage gewidmet worden, ob diese Verschiedenheiten einige Bedeutung für das System haben können oder ob diese oder jene Form wie aus einer Laune bei einigen Repräsentanten einer Familie aufgetreten sei, während die übrigen einem ganz anderen Typus angehören. Die letzten Versuche diese Frage zu beantworten wurden vor mehr als zwanzig Jahren gemacht, und diese fielen höchst verschieden aus. Mayer\(^1\) glaubte nach dem Gehirn ein ichthyologisches System aufstellen zu können; Baudelot\(^2\) gelangte zu der Ansicht, dass es nur zwischen den Ordnungen oder Unterklassen (Cyclostomi, Selachei, Ganoidei und Teleostei) der Fische systematisch wertvolle Unterschiede im Bau des Gehirns gebe.

Da ich nun einige Beobachtungen zur Erörterung dieser Frage veröffentlichte, bin ich mir der Mangelhaftigkeiten und der Lücken in meiner Arbeit wohl bewusst. Die Schwierigkeiten lagen wohl nicht in den Untersuchungen selbst, die ja sehr einfach und grob gewesen sind, sondern hatten ihre Ursache in dem oft mangelhaften Untersuchungsmaterial. In Bezug auf extraskandinavishe Fische bestand dies aus Museenexemplaren, von denen viele mehrere Jahre in oft ganz schwachem Spiritus aufbewahrt worden waren. Es ist selbstver-

ständlich, dass, da der Schädel nicht geöffnet und das Gehirn dem direkten Einwirken des Alkohols nicht ausgesetzt worden, dies oft in Fäulnis übergegangen war. Die Hypophysis und die Infundibulardrüse habe ich bei einigen, von denen mir nur je ein einziges Exemplar zur Verfügung stand, nicht unbeschädigt hervorpräparieren können.

Unter den hervorragendsten Arbeiten über das Gehirn der Grätenfische mögen folgende erwähnt werden:

Baudelot, Oben angef. Arbeit.

Nähere Auskunft über die hierher gehörige Literatur wird von Gottsch, Baudelot und Fritsch gegeben.

Meinen verehrten Lehrern Prof. Dr. T. Tullberg und Prof. Dr. Hj. Theel, die mich in meiner Arbeit mit guten Ratschlägen unterstützt haben, will ich mir erlauben hier meinen wärmsten Dank auszudrücken. Insbesondere bin ich Herrn Prof. Tullberg sehr verbunden, der mir sowohl auf dem hierigen zoologischen Institut Arbeitsplatz bereitet als auch Zutritt zu den während der letzten Jahre sehr bereicherten Fischsammlungen des Zoologischen Museums gütigst gewährt hat.

I.

Betreffend die allgemeine Configuration des Gehirns der Teleostier brauche ich nur auf die üblichen zoologischen Handbücher z. B. auf Lehrbuch der vergleichenden Anatomie der Wirbeltiere von R. Wiedersheim (zweite Auflage) hinzuweisen. Es sei mir nur erlaubt, die Aufmerksamkeit darauf zu lenken, dass die Bildungen, die Wiedersheim auf Fig. 232 mit Lp (lobi posteriores) bezeichnet, nichts anderes sind als die Seitenteile des Hinterhirns. Die Lobi posteriores liegen rückwärts vom Cerebellum und sind hier, wie auch bei den meisten Acanthopterygii, sehr schwach entwickelt.

Die Riechlappen (Bulbi olfactorii).

Die Riechlappen sind sowohl nach der Form und Grösse als auch nach der Lage verschiedenen Wechselungen unterworfen. Schon seit langer Zeit hat man nach der Lage zwei Typen — *Cyprinoidypus* und *Salmonidypus*) — unterschieden. Ersterer zeichnet sich dadurch aus, dass die Riechlappen dicht oder ziemlich dicht an der Nasenhöhle liegen und mit den übrigen Teilen des Gehirns durch lange Tractus olfactorii verbunden sind. Diese eigentümliche Form ist dadurch entstanden, dass in den Ausstülppungen von dem Prosencephalon, die sich bei anderen ganz zu den Riechlappen ausbilden, sich hier nur in den vordersten Teilen und in den unteren Seiten

1) Rabl-Rückhard, Das Grosshirn der Knochenfische.
Nervensubstanz ausgebildet hat. Übrigens sind die Wände auf einer niedrigen Entwicklungsstufe geblieben und bestehen nur aus einem einschichtigen Lager nach RABL-RÜCKHARD vielleicht flimmernder Zellen, das sich dicht an die Pia gelegt hat.

Präpariert man das Gehirn z. B. eines Kühlings (Leuciscus idus) behutsam, zeigt es sich, dass das Pallium sich nach vorn in zwei breiten Röhren fortsetzt, die sich allmählich verschmälen. Im proximalen Teil stossen sie dicht an einander; vorn schliessen sie sich den Riechläppchen an. Im Boden jeder Röhre verlaufen die Fasern der Tractus olfactorii.

In der Form finden sich auch grosse Verschiedenheiten, die doch wahrscheimlich von geringer Bedeutung sind. Bei den Lachsen (z. B. Coregonus albula, IV, 52) sind sie eiformig, die medianen Seiten, mit denen sie dicht an einander liegen, ein wenig abgeplattet. Gewöhnlich verschmälen sie sich von einer mehr oder weniger breiten Basis allmählich gegen die Riechnerven (z. B. Zoarces viviparus, II, 26a, und Cottus scorpius, I, 14a). Ungefähr ebenso breit wie lang ist
Der Teil derselben bei *Zeus pungio* (II, 22) und *Liparis lineatus* (III, 35a), der gesehen werden kann, wenn man das Gehirn von oben betrachtet.

Die Stammloben (Lobi hemisphærici).

MALME, STUDIEN ÜBER DAS GEHIRN DER KNOCHENFISCHE.

Nur wenig weichen Acanthurus, Elacate (und andere Scombridae) und Coryphaena (II, 18 und 20) von diesem Typus ab, indem die Hauptfurchen bis an den vorderen Rand der Stammloben reichen.

Unter den Stachelsfischarten (Acanthopterygii) haben die Lippfische und die Spariden das verhältnismässig grösste Vorderhirn. Bei den letzteren beruht die Grössenzunahme auf der grossen Entwicklung der medialen Teile; bei den Labriden haben auch die lateralen, und zwar vielleicht in höherem Grade, beigetragen.

Auch Gobius niger (II, 24a) (nebst anderen Gobiiden), dessen Gehirn übrigens eine von demjenigen der Lippfische sehr abweichende Form besitzt, hat eine mit der Hauptfurche parallel verlaufende Beifurche, wie es FRITSCHE a. a. O. Fig. 16 angegeben hat. Die eingeschobene Partie wird durch eine kurze Querfurche in zwei Teile zerlegt. Die Stammloben sind auch bei diesem Fische ziemlich gross, ein wenig schmäler als
die Lobi optici. Hier sind es aber fast ausschliesslich die lateralen Teile, die an grössse zugenommen haben; sie werden auch nicht von den medialen überragt. Diese strecken sich nicht länger rückwärts als jene. Das ganze Vorderhirn hebt sich ein wenig über die Lobi optici.

Bei den Büschelkiemen (z. B. Nerophis equoreus), mehreren Physostomen (Salmonidae, Scopelidae, Clupeidae und Esocidae) und einigen Stachelflossen (Mugilidae, Atherinidae und Gasterosteidae), die mit verhältnismässig kleinen, von sich verschmälernden Stammlöben und ziemlich grossen Riechlappen versehen sind, ist keine deutliche Hauptfurche vorhanden. Das Pallium schliesst sich dichter dem Vorderhirn an als bei anderen Knochenfischen, und die Oberfläche der Loben ist fast glatt. Ich glaube diese Form — Esocidtypus (vgl. V, 57a) — als die ursprünglichste betrachten zu können, insbesondere weil sie bei in anderen Hinsichten so verschiedenen Familien zu, finden ist.

Das Mittelhirn (Lobi optici).

Das Mittelhirn ist in Bezug auf die Form keinen grösseren Wechselungen unterworfen. Die Oberfläche ist fast immer eben. Nur bei den Clupeiden (V, 58a und 59) findet sich
eine Einkerbung auf jedem Lobus. Diese Einkerbung ist auf frischem Material nur schwach angedeutet, wird aber, wenn das Gehirn in Spiritus zum Härten gelegt wird, viel tiefer. So tief habe ich sie doch nimmer gefunden, wie sie Mayer a. a. O. Taf. VI, Fig. 11 gezeichnet hat.1)

Dass übrigens die Form des Gehirns ein wenig von der Form der Schädelhöhle abhängt, insbesondere wenn die umgebenden weichen Teile nicht die gewöhnliche Dicke haben, ist wohl nicht nöthig zu sagen. Ein abgeplatteter Kopf bedingt oft (doch nicht immer) ein abgeplattetes Gehirn (z. B. Echeneis remora).

Die Grösse der Lobi optici im Verhältnis zu den übrigen Teilen des Gehirns ist bei verschiedenen Familien und Gattungen eine ganz verschiedene, wie es aus meinen Figuren hervorgeht.

Nach Göttscbe, o. a. A., bedingen kleine Augen kleine Lobi optici; die Grösse der ersteren würde in direktem Verhältnis zur Grösse der letzteren stehen. Wenn auch dies bei einzelnen Fischen der Fall ist — z. B. Lota vulgaris und Anguilla vulgaris (V, 67a) — kann es doch nicht als ein allgemeines Gesetz aufgestellt werden. Sebastes viriparuns (I, 11) ist trotz seiner grossen Augen mit einem Mittelhirn versehen, das in der Breite nur sehr wenig das Vorderhirn übertrifft; Ammodytes tobiansus (III, 44a) hat ziemlich kleine Augen und doch sind die Lobi optici verhältnismässig sehr gross. Mehrere Exemplar derselben Art können angeschafft werden. Wenn aber innerhalb derselben Familie oder derselben Gattung zwei Arten mit verschiedener Grösse der Augen vorkommen, findet man oft, dass die grossaugige grössere Lobi optici besitzt (z. B. Gadus minutus).

Ich kann hier nicht unterlassen die Aufmerksamkeit darauf zu lenken, dass das Dach der Lobi optici zuweilen unvollständig ist; d. h. es besteht teilweise — in den medialen hinteren Teilen — nur aus einem dünnen Lager, das sich dicht an die Pia gelegt hat. Dies ist oft der Fall bei den

Das Hinterhirn (Cerebellum und Valvula cerebelli).

Nähere Auskunft über die Verschiedenheiten in Bezug auf das Cerebellum will ich in der Behandlung der einzelnen Familien geben. Hier sei es mir erlaubt nur einige extreme Formen ein wenig zu besprechen.

Bezi *Raniceps raninus* (IV, 46a) ist der Mittelteil des Hinterhirns sehr stark entwickelt. Er übertagt nicht die Lobi optici, legt sich aber nach hinten und bedeckt, dicht ans ver-
längerte Mark gedrückt, die ganze Rautengrube nebst Lobi posteriores & vagales. In der Länge übertrifft er beide, das Mittelhirn und die Stammloben. Die Seitenteile sind klein, werden aber leicht wahrgenommen, auch wenn das Gehirn von oben gesehen wird.

Eine derselben Familie zugehörige Art, Labrichthys celidotra (III, 40), hat ein Cerebellum, das das Mittelhirn übertrifft, dessen Spitze sich aber nach hinten und unten beugt und bis ans verlängerte Mark reicht. Querfurchen sind nicht vorhanden. Die Rautengrube kann von oben nicht gesehen werden.

Beı Ictalurus lophius (IV, 49a) legt sich der Mittelteil des Hinterhirns nach vorn und reicht bis an die Stammloben. Er ist dicht an die Lobi optici gedrückt. Die Seitenteile haben eine ungewöhnliche Grösse erreicht, sind fast ebenso hoch als der Mittelteil und strecken sich weit nach den Seiten aus, so dass die grösste Breite des Gehirns eben hier zu suchen ist. Die Rautengrube wird ganz unbedeckt gelassen.

Auch Acanthurus triostegus (II, 21) hat nach vorn gerichtetes Hinterhirn, das sogar bis an die Riechlappen reicht. Die Seitenteile sind klein und vom Mittelteil undeutlich abgesetzt.

den nahestehenden *Scombriden* und *Coryphaeniden*. Das Gehirn des karpfenartigen Nilbeetes dagegen ist wohl als eine weitere Ausbildung des bei den Siluriden vorkommenden Typus zu betrachten. Mit demselben scheint es auch dies gemeinsam zu haben, dass die Bulbi olfactorii nach dem Cyprinidtypus gebaut sind.

Gobius niger (II, 24a) hat ein sehr kleines abgerundetes oder längliches Hinterhirn, welches doch ganz und gar die kurze Rautengrube bedeckt. Die Seitenteile sind kaum merkbar.

Beim *Anguilla vulgaris* (V, 67a) ist das Cerebellum abgerundet rechteckig, mehr breit als lang und breiter als die Lobi optici und das verlängerte Mark. Es legt sich ein wenig rückwärts, lässt aber die Rautengrube zum grössten Teil unbedeckt. Die Seitenteile sind kaum merkbar abgesetzt.

Querfurchen am Hinterhirn gibt schon Cuvier für den Thunfisch an; es finden sich solche auch bei anderen *Scombriformes* (*Echeneis, Elacate, Coryphaena*). Ich fand sie auch bei mehreren und zwar den grössten untersuchten Lipfishen z. B. *Labrus merula*, *berggylta* und *melops*.

Eine deutliche mediane Längsfurche, wie sie Mayer auf mehreren Figuren gezeichnet hat, beobachtete ich nur bei *Anguilla vulgaris*. Kaum merkbare Spuren finden sich oft an rückwärts gerichteten Hinterhirnen.

Obgleich eine Beschreibung der Verschiedenheiten im Bau der Valvula cerebelli vielleicht mit vollem Recht in der Behandlung der äusseren Form des Gehirns weggelassen werden könnte, will ich mir doch erlauben diese den Teleostierm so eigentümliche Bildung ein wenig zu besprechen. In seinem ichthyologischen System hat Mayer grosse Rücksicht auf die Valvula (von ihm *Corpus geminum* genannt) genommen. Er hat auch viele Abbildungen davon geliefert, über welche doch
mehrere Anmerkungen gemacht werden können. Seine Beschreibungen sind oft unzuverlässig, nicht selten sogar sehr irreführend. Ob die verschiedenen Formen sich aus einander ableiten lassen, ist eine Frage, der er keine Aufmerksamkeit gewidmet hat. Mein Versuch dieselbe zu beantworten und einige Typen aufzustellen mag als nur ad interim geltend angesehen werden. Es sind genaue mikroskopische Untersuchungen erforderlich, und ich hoffe bald einige solche vornehmen zu können.

Bei einem Repräsentanten der Fam. Gadidae, Gadus virvens, fand ich ausser der Längsfurche eine hinter der Mitte der Valvula befindliche breite, seichte Querfurche. Ich glaube hier eine Übergangsform zur Valvula quadrigemina gefunden zu haben. Wenn diese Furche tiefer in die Valvula hineinragt und die hinteren so entstandenen Knoten ein wenig an der Grösse zunähmen, entstände eben die Form, die wir bei Hippoglossus

1) BAUDELOT hat gute Abbildungen hiervon geliefert.
vulgaris (IV, 48a) und anderen Pleuronectiden finden, die ich der Kürze wegen so nennen will. Das Dach einer Valvula quadrigemina besteht aus einem vorderen und einem hinteren Knotenpaar, wovon das letztere gewöhnlich das grössere ist und das vordere nicht selten mehr oder weniger bedeckt. Die Längsfurche ist bald breit (z. B. Hippoglossus vulgaris), bald schmal und tief (z. B. Atherina und Perca).

Vielleicht ist es eben diese Form, die verursacht hat, dass man in Valvula ein Homologon zu den Vierhügeln der Säugetiere, also das Mesencephalon zu finden geglaubt hat.

Außer bei den Pleuronectiden ist eine Valvula quadrigemina bei mehreren Perciden, bei Cepola, Atherina, Esox, Salmo und anderen beobachtet worden.

Die Knoten des hinteren Paares sind zuweilen nach den Seiten gerückt; die Valvula besteht dann aus einem meistenteils mit einer Längsfurche versehenen Mittelstück und zwei rundlichen Seitenteilen, die jenes ein wenig bedecken (z. B. bei Mugilidae, (III, 32b)). Es ist dies eine Form, welche der bei Agriopus vorkommenden sehr ähnelt und mit derselben vielleicht verwechselt werden kann. Die Seitenteile sind doch hierbei Fische nur durch das Mittelstück verbunden, während sie bei Mugil durch eine hinten über demselben gelegene Commissur vereinigt sind.

1) Bei diesen füllt die Valvula die Höhle des Mittelhirns fast ganz und gar aus. Eine nach dem Carangidtypus gebaute Valvula, bei verschiedenen Familien von verschiedener Grösse und Ausbildung, ist bei Serranus, Moena und Dentex unter den Perciden, bei Spa-

1) Mayer o. a. A.
Die Rautengrube (Fossa rhomboidalis) und die Lobi posteriores.

In Bezug auf diese Bildungen will ich hier nur wenige Bemerkungen beifügen. Wie es schon aus dem hervorgeht, was oben vom Hinterhirn gesagt wird, wechselt die Rautengrube sehr bedeutend in der Länge. Während sie z. B. an einem 16 mm langen Gehirn einer Aalmutter (Zoarces viviparus, II, 26a) eine Länge von 5 mm erreicht, ist sie an einem 11,5 mm langen Gehirn von Acanthurus triostegus (II, 21) nur 1 mm lang. Beispiele von langer Rautengrube liefern auch Cottidae, Scorpaenidae und Gadidae; eine verhältnismässig kurze findet sich bei Carangidae, Scorbridae, Esox, Tetraodon u. v. a. Nicht selten wird sie ganz und gar vom Hinterhirn bedeckt, z. B. bei Elacate, Coryphaena, Sphyraena, Gadidae und Esox.

An jeder Seite der Rautengrube findet sich eine Anschwellung (Lobus posterior), die nicht selten mit derselben Bildung der anderen Seite durch eine die Fossa überbrückende Commissur verbunden wird. Eine solche Commissura loborum posteriorum ist mit Sicherheit bei Percidae, Sparidae, Gadidae, Cyprinidae u. v. a. nachgewiesen worden. Bei Bleennidae,

1) A. a. O. pag. 59.
Cottidae, Scorpionidae, Carangidae, Murenidae u. a. habe ich keine finden können. Bei den Stachelflossern sind die Lobi posteriores in der Regel wenig hervortretend, nicht selten kaum merkbar; am kräftigsten unter den Acanthopterygii fand ich sie bei einigen Perciden (z. B. Apogon carinatus) und bei Sillago ciliata. Bei den Schellfischen (Gadidae) sind sie viel kräftiger, und jeder Lobus wird in eine vordere und eine hintere Partie abgeteilt. Die letztere hat den Namen Lobus nervi vagi s. Lobus vagalis erhalten. Die vorderen sind es, die durch Commissura lob. posteriorum verbunden werden und welche auch am grössten sind.

In Bezug auf die eigentümlichen Lobi posteriores der Fam. Siluridae und Scopelidae weise ich auf Seite 36 und 37 hin.

Die unteren Loben (Lobi inferiores) und die Infundibuladrüse (Saccus vasculosus).

Lobi inferiores sind zwei unter dem Mittelhirn liegende Körper, die am häufigsten fast eiförmig oder ein wenig nierenförmig sind (z. B. bei Perca (I, 2), Cottus, Labrus und Neorophis). Seltener sind sie hinter der Mitte ein wenig an den Seiten zusammengedrückt (z. B. bei Lates (1, 1b), Caranx und Elacate); und wenn dies der Fall ist, sind sie auch zuweilen mehr abgeplattet und an ihrer unteren Fläche mit Einsenkungen versehen (z. B. Elacate). Nach vorn divergieren sie gewöhnlich mehr oder weniger und werden von Tuber cinereum (und Hypophysis) getrennt. Hinten stossen sie entweder zusammen (z. B. Caranx, II, 16c, und Gobius, II, 24b) oder
werden durch die Infundibulardrüse ganz und gar (z. B. Cottus, I, 14b) oder zum größeren oder geringeren Teil (z. B. Callionymus, II, 25b, und Labrus, III, 38b) aus einander gehalten. Die Größe in Beziehung zu den Lobi optici ist bei verschiedenen Familien eine ziemlich verschiedene. Bei einem Exemplar von Gobius niger, dessen Mittelhirn eine Breite von 3,5 mm erreicht hatte, waren die Lobi inferiores 2,75 mm breit. Bei einem Exemplar von Lates colonorum beliefen sich die entsprechenden Zahlen auf 10 mm und 7 mm, bei Caranx trachurus auf 8 mm und 4,5 mm, bei Coregonus lavaretus auf 7,5 mm und 4,5 mm.

Auch die Infundibulardrüse ist grossen Wechselungen unterworfen und zwar grösseren als die vorerwähnten Teile in Bezug auf die Form, die Größe und die Lage. Einigen fehlt sie sogar ganz und gar, z. B. Atherinidae, Mugilidae, Cyprinidae, Esocidae und Scombresocidae. Bei Sphyraena und mehreren anderen ist sie klein, schmal eiförmig mit der Spitze nach hinten, liegt unmittelbar hinter Hypophysis und erreicht nicht den hinteren Rand der Lobi inferiores. Auch bei Caranx ist sie winzig, ihre Form ist doch hier eine andere (vergl. Fig. 16c). Bei Hippoglossus vulgaris (IV, 48b) ist sie ziemlich breit und streckt sich von Hypophysis und Tuber cinereum weit hinter die unteren Loben; die grössste Breite ist in dem hinteren Teil zu suchen. Bei Labrus berggylta (III, 38b) ist sie eiförmig, mit der Spitze nach vorn, und nach hinten gedrängt. Fast ganz und gar hinter den Lobi inferiores liegt die Infundibulardrüse bei Gobius niger (II, 24b), wo sie übrigens durch eine Einkerbung in zwei nebeneinander liegende Partien geteilt worden ist.
II.

Untersucht sind:

Perea fluviatilis L.,
Lates colonorum Günth.,
Acerina cernua (L.),
Lucioperca sandra Cuv.,
Anthias sacer (Bl.),
Apogon carinatus C. V.,

Serranus scriba (L.),
S. cabrilla (L.),
Dentex vulgaris C. V.,
Moena vulgaris C. V.,
Smaris vulgaris C. V.,

Taf. I. Fig. 1—6.

Bei allen Perciden sind die Riechlappen nach dem Salmo-
 nidtypus gebaut, mittelmässig oder ziemlich schwach entwic-
kelt (am stärksten bei Lucioperca, am schwächsten bei An-
thias und Moena). Die Riechnerven laufen eine längere oder
kürzere Strecke neben einander. Die Stammloben gehören
dem Percidtypus an. Bei Moena und Dentex sind die medi-
alen Teile stärker entwickelt und heben sich über die lateralen.
wodurch eine Übergangsform zwischen dem Percid- und dem
Sparidtypus hervorgerufen wird. Die Lobi optici überragen
nicht oder nur wenig die Stammloben; die Grösse derselben
wechselt innerhalb enger Grenzen. Desto grösseren Verschiede-
enheiten nicht nur in der Grösse, sondern auch in der Form
ist das Hinterhirn unterworfen. Einige sind schon oben er-
wähnt worden. Bei Serranus, Moena, Dentex und anderen
legt sich die Spitze des Hinterhirns ein wenig nach vorn über
das Mittelhirn, erreicht aber nicht die Stammloben. Die Sei-
tenteile können immer von oben gesehen werden. Valvula
cerebelli ist bei Perea, Acerina, Lates, Lucioperca und Apogon
eine Valvula quadrigemina, deren vorderes Knotenpaar mei-
stenteils kleiner als das hintere ist. Bei Serranus, Moena und
Dentex besteht sie aus einer zungenförmigen Mittelpartie, oft
mit einer breiten, seichten Längsfurche, und zwei gekrümmten
Seitenteilen, die mit den hinteren Knoten der Valvula quadri-
gemina wahrscheinlich homolog sind. Die Rautengrube wird
bei keinem ganz vom Hinterhirn bedeckt; oft wird sie aber
durch eine zwischen den Lobi posteriores gehende Commissur überbrückt. Die unteren Loben (Lobi inferiores) sind bei *Lates* und *Perca* ein wenig verschieden, wie es auf Fig. 1b und Fig. 2 zu sehen ist. Von ähnlicher Beschaffenheit wie beim ersteren sind sie bei *Serranus* und *Moena; Lucioperca, Anthias* und *Acerina* ähneln der letzteren Form. Die Infundibulardrüse (*Saccus vasculosus*) ist breit und zwar teils der ganzen Länge nach gleich breit und ein wenig hinter die Lobi inferiores reichend (*Lucioperca*), teils hat sie dieselbe relative Länge ist aber vorn schmäler und zwischen den Loben zusammengedrängt (*Perca* und *Serranus*), teils wird sie im vorderen Teil ganz von den Loben versteckt (*Anthias*), teils ist sie eiförmig und erreicht nicht den hinteren Rand der Loben (*Lates* und *Acerina*).

Fam. **Sparidæ.**

Untersucht sind:

Cantararus lineatus White, *Sargus annularis* (L.),
Box boops (L.), *Pagrus vulgaris* C. V.

Taf. I, Fig. 7 und 8.

In Bezug auf das Gehirn sind die Spariden in den meisten Hinsichten mit den Perciden übereinstimmend. Der hauptsächliche Unterschied ist in der schon oben beschriebenen Ausbildung der Stammloben zu suchen. Das Hinterhirn ist gross, bei *Cantharus* und *Pagrus* nach oben gerichtet, und erhebt sich hoch über das Mittelhirn. Bei *Box* ist die Spitze nach vorn dicht an die Lobi optici gedrückt, erreicht aber nicht die Stammloben. Valvula cerebelli ist wenigstens bei *Pagrus* und *Box* nach dem Carangidtypus gebaut und mit schön gewundenen Seitenteilen versehen, die die Höhle des Mittelhirns fast ganz und gar ausfüllen. Die unteren Loben sind gross und von derselben Form wie bei *Lates*. Mit diesem Barschenfische stimmen die Spariden auch in Bezug auf die Infundibulardrüse überein. Die eigentümliche Form des Mittelhirns, die auf Fig. 7 zu sehen ist, ist nur bei *Pagrus* beobachtet worden. Sie ist zweifellos durch die starke Entwicklung der proximalen Teile der Sehnerven verursacht worden.
Fam. Scorpaenidae.

Untersucht sind:

Taf. I, Fig. 9—11.

Fam. Sciaenidae.

Die Stammloben sind fast eben so breit als die Lobi optici und mit einer Hauptfurche versehen; die medialen Teile derselben überragen nicht die lateralen. Sie gehören also dem Percidtypus an. Das Hinterhirn hebt sich über die Lobi optici; die Spitze derselben ist nach vorn gerichtet und ans Mittel-

Fam. Carangidæ.
Untersucht sind: Caranx trachurus (L.), Lichia glauca (L.), Argyreiosus setipinnis (Witch.).
Taf. II, Fig. 16 und 17.

Fam. Scombridæ.
Untersucht sind: (Scomber scombrus L.) Echeneis remora L., Elacate nigra (Bl.).
Taf. II, Fig. 18 und 19.

Fam. Coryphaenidæ.
Untersucht: Coryphaena punctata C. V. (Taf. II, Fig. 20.)
Fam. Acronuridae.

Untersucht: *Acanthurus triostegus* (L.). (Taf. II, Fig. 21.)

Fam. Trachinidae.

Untersucht sind:

Sillago ciliata C. V. und *Uranoscopus scaber* (L.).

Die beiden untersuchten Repräsentanten dieser Familie zeigen grosse Verschiedenheiten unter einander. Während *Sillago* (II, 23) sich in mehreren Hinsichten den Scombriden
ähnert, erinnert Uranoscopus an die Scorpaeniden. Bei beiden sind die Riechlappen mittelmässig entwickelt. Die Stammloben sind verhältnismässig gross, und die medialen Teile derselben, die nicht die Bulbi olfactorii erreichen, bedecken zum Teil die lateralen und erheben sich, insbesondere bei Sillago, über das Mittelhirn. Das Hinterhirn ist bei Sillago ziemlich gross, nach hinten gerichtet und bedeckt ungefähr zur Hälfte die Rautengrube. Bei Uranoscopus ist es ziemlich klein, fast rundlich, und die Rautengrube wird zum grössten Teil unbedeckt gelassen. Die Valvula besitzt bei Sillago die oben (Seite 15) erwähnte, der bei Mugil vorkommenden sehr ähnliche Form, und das Mittelstück reicht ungefähr an die Mitte der Höhle des Mittelhirns; bei Uranoscopus ist sie eine winzige Valvula quadrigemina. In Bezug auf Lobi inferiores, Hypophysis, Tuber cinereum und Saccus vasculosus stimmt Sillago mit Elacate überein. Bei Uranoscopus sind dagegen die Lobi sehr klein, die Infundibulardrüse ist breit und weit nach hinten reichend; Hypophysis bedeckt, wenn das Gehirn von unten gesehen wird, ganz das Tuber cinereum.

Fam. Cottidæ.

Untersucht sind:

Cottus gobio L., *Platycephalus neglectus* Trosch.,
C. scorpius L., *Trigla gurnardus* L.,
C. bubalis Euphr., *Prionotus evolans* (L.).

Taf. I, Fig. 14 und Taf. II, Fig. 15.

Mit Cottus stimmt Platypocephalus sehr nahe überein. ist aber dadurch verschieden, dass die medialen Teile der Stammloben die lateralen überragen (aber nicht bedecken) und dass die Seitensteile des Hinterhirns ziemlich wohl entwickelt sind.

Bei Trigla und Prionotus ist das Gehirn breiter und höher als bei Cottus, was hauptsächlich von der stärkeren Entwicklung des Mittelhirns herrührt. Die medialen Teile der Stammloben sind stark entwickelt und bedecken zum größten Teil die lateralen, erheben sich auch bei Trigla (nicht bei Prionotus) ein wenig über Lobi optici. Cerebellum legt sich rückwärts und bedeckt fast ganz und gar die Rautengrube, ist aber nicht wie bei Cottus fast wagerecht, sondern neigt sich bedeutend nach hinten und unten. Valvula cerebelli ist relativ größer, reicht bis an die Mitte der Höhle des Mittelhirns und besteht aus einem kleinen Mittelstück und zwei Seitensteilen von fast derselben Form wie bei Serranus. Lobi inferiores und die Infundibulardrüse verhalten sich wie bei Cottus; die letztere ist doch ein wenig kleiner. (Vergl. Fritsch, o. a. A. Seite 24, Fig. 7!) Die seit langer Zeit bekannten, paarigen Anschwellungen am vorderen Abschnitte des Rückenmarks bei Trigla sind auch bei Prionotus in gleicher Zahl (fünf Paare) vorhanden.

Fam. Cataphracti.

Untersucht sind:

Agonus cataphractus (L.). Dactylopterus colitans (L.).
Peristethus cataphractum (L.).

Taf. I, Fig. 12 und 13.

dieselbe unbeschädigt bloßzulegen. Bei *Peristethus* ist sie dagegen ziemlich groß, bis über die Mitte der Höhle des Mittelhirns reichend und besteht aus einem zungenförmigen Körper, der mit einer Längs- und einer Querfurche versehen ist. Die Infundibulardrüse hat bei *Agonus* eine bedeutende Größe erreicht, ist fast ebenso breit als jeder Lobus inferior und reicht ein wenig hinter dieselben. Bei *Peristethus* und *Dactylopterus* ist sie dagegen sehr klein; beim letzteren zeigt sie sich nur als ein unmittelbar hinter Hypophysis liegender runder Körper; bei *Peristethus* ist sie eine eiförmige Bildung, deren Spitze sich ein wenig hinter die Mitte der Lobi inferiores streckt. Lobi inferiores sind (wie bei Scorpaenidae und Cottidae) von der schon bei *Perea* beobachteten Form.

Fam. Gobiidae.

Untersucht sind:

- *Callionymus lyra* L.,
- *C. maculatus* RAfin.,
- *Periophthalmus Koelreuteri* Bl. SCHN.,
- *Gobius niger* L.,
- *G. marmoratus* Risso,
- *G. cruentatus* L.
- u. a. Arten der Gattung *Gobius.*

Taf. II, Fig. 24 und 25.

unter allen Knochenfischen; auch bei *Gobius* ist sie ziemlich klein. Lobi inferiores sind dagegen kräftig entwickelt (insbesondere bei *Gobius*) und bei *Callionymus* mit einer fast l-förmigen Einsenkung versehen. Die Infundibulardrüse ist weit nach hinten zwischen, bei *Gobius* sogar fast hinter, die Lobi inferiores gedrängt worden; bei *Callionymus* ist sie fast eiförmig, bei *Gobius* breiter als lang und durch eine Einkerbung unvollständig in zwei neben einander liegende Partien geteilt worden.

Fam. Cepolidae.

Fam. Blenniidae.

Untersucht sind:

Anarrhichas lupus L.,
Clinus argentatus Risso,
Zoarces viviparus (L.).

Taf. II, Fig. 26 und 27.

Wie es schon Mayer, der *Zoarces* und *Cottus* zu der selben Familie führte, hervorgehoben hat, stimmen die Blenniiden in Bezug auf das Gehirn mit den Cottiden sehr nahe überein. Bulbi olfactorii sind wohl entwickelt. Die medialen Teile der Stammloben überragen nicht die lateralen und erheben sich nicht über die Lobi optici. Cerebellum ist bei *Zoarces*

Fam. Sphyraenidae.

Untersucht: Sphyraena jello C. & V.

Taf. III, Fig. 29.

Fam. Atherinidae.

Untersucht: Atherina hepsetus L.

Taf. III, Fig. 30.

Die Riechlappen und die Riechnerven sind schwach entwickelt. An den kleinen Stammloben fehlt jede Spur der
Hauptfurchen. Das Hinterhirn überragt ein wenig die Lobi optici, legt sich übrigens nach hinten und bedeckt zum größten Teil die Rautengrube; die Seitenteile desselben sind gross. Valvula cerebelli reicht ungefähr bis an die Mitte der Höhle des Mitteihirns; das Dach derselben ist durch eine Längs- und eine Querfurche in zwei Knotenpaare geteilt worden, wovon das hintere viel breiter als das vordere ist. Lobi inferiores sind klein und von der gewöhnlichen Form (vergleiche Percă fluviatilis). Eine Infundibulardrüse konnte ich nicht finden. Das Infundibulum ist nach vorn ausgezogen, und dem zufolge liegt Hypophysis vor und unter der Schnervenkreuzung.

Fam. Mugilidae.

Untersucht: *Agonostoma Forsteri* (Bleek.) und *Mugil cephali tus* C. V.

Taf. III, Fig. 31 und 32.

Fam. Gasterosteidae.

Untersucht: *Gasterosteus aculeatus* L.,
G. pungitius L.
und *Spinachia vulgaris* Flem.
Taf. III, Fig. 33 und 34.

Fam. Gobiesocidae.

Untersucht: *Lepadogaster Candollei* Risso.
Taf. III, Fig. 36.

Fam. Labridae.

Untersucht sind:
- *Labrus bergylta* Ascan.,
- *L. merula* L.,
- *L. melops* L.,
- *L. rostratus* Bl.,
- *L. mediterraneus* L.,
- *L. rupestris* L.,
- *Labrus exoletus* L.,
- *Julis pavo* (Hasselq.),
- *Coris julis* (L.),
- *C. Giofredii* Risso,
- *Labrichthys cedlota* (Forst.).

Taf. III, Fig. 38—40.

Fam. Pomacentridae.

Untersucht:
- *Heliastes chromis* (L.),
- *Daseyllus aruanus* (L.).

Taf. III, Fig. 37.

Die Labriden und die Pomacentriden bilden in Bezug auf das Gehirn einen der ausgezeichnetesten und distinktesten Typen unter den Knochenfischen. Am nächsten steht ihnen wahrscheinlich die Familie der *Schuppenflosser*, die mir doch in »encephalologischer« Hinsicht ziemlich unbekannt ist. Die Riechnerven sind schwach entwickelt, und dies ist auch der Fall mit den Riechlappen, die zuweilen ganz und gar von den Stammloben bedeckt werden. Bei *Julis pavo* sind die Tractus olfactorii in die Länge gezogen, so dass die Riechlappen ein wenig nach vorn gerückt sind. Die Stammloben sind schon oben (Seite 8) erwähnt worden. Sie überrasgen immer, aber mehr

1) Es standen wohl drei Arten dieser Fam. zu meiner Verfügung. An zwei derselben war doch das Gehirn ganz und gar verdorben. Am dritten konnte ich beobachten, dass die Stammloben mit denjenigen der Labriden sehr nahe übereinstimmen (vergl. Fig. 41!). Die Valvula ist demselben Typus zugehörig. Das Hinterhirn ist fast aufrecht und erhebt sich hoch über die Lobi optici, und die Rautengrube ist ganz unbedeckt gelassen. Ob eine Infundibulardrüse vorhanden ist, war mir ganz unmöglich zu sehen.

Fam. Gadidae.

Untersucht sind:

<table>
<thead>
<tr>
<th>Gattung</th>
<th>Art</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gadus</td>
<td>morrhua L.</td>
</tr>
<tr>
<td>G.</td>
<td>merlangus L.</td>
</tr>
<tr>
<td>G.</td>
<td>minutus L.</td>
</tr>
<tr>
<td>G.</td>
<td>pollockius L.</td>
</tr>
<tr>
<td>Gadus</td>
<td>vires L.</td>
</tr>
<tr>
<td>Lota</td>
<td>vulgaris Cuv.</td>
</tr>
<tr>
<td>Molva</td>
<td>vulgaris Flem.</td>
</tr>
<tr>
<td>Raniceps</td>
<td>raninus (O. F. Müll.).</td>
</tr>
</tbody>
</table>

Taf. III, Fig. 42 und IV, Fig. 45 und 46.

1) Sehr gute Abbildungen vom Gehirn des Wittlings sind von Baudelot geliefert worden.

Fam. Ophidiidae.

Untersucht sind: Ophidium barbatum L. und Ammodytes tobianus L.

Taf. III, Fig. 44.

Von den beiden untersuchten Repräsentanten der Fam. Ophidiidae stimmt der eine, Ophidium barbatum, am meisten mit Macrurus überein. Die Riechlappen liegen vor und unter den Hemisphären und sind (wie auch die Riechnerven) sehr schwach. Die Stammloben sind breiter als das Mittelhirn und mit deutlichen Hauptfurchen versehen. Die lateralen Teile sind stärker entwickelt und erheben sich über die medialen, welche letztere nicht an die Riechlappen reichen. Das Hinterhirn ist kürzer als bei Macrurus, biegt sich zwar nach hinten, legt sich aber nicht dem verlängerten Mark an und bedeckt nicht die Rautengrube. Lobi posteriores sind durch eine breite, die Rautengrube überbrückende Commissur verbunden. Lobi inferiores sind ziemlich klein, und die Infundibulardrüse ist weit nach hinten zwischen dieselben gedrängt worden.

Fam. Pleuronectidæ.

Untersucht sind:

Hippoglossus vulgaris Flem., *Pleuronectes platessa* L., *Hippoglossoides limandoides* (Bl.), *Pl. microcephalus* Don., *Rhombus punctatus* (Bl.), *Solea vulgaris* Quens., *Pleuronectes limanda* L.,

Taf. IV, Fig. 47 und 48.

nach hinten und bedeckt zum grössten Teil die Rautengrube; bei den übrigen ist es kleiner, schräg nach oben (und hinten) gerichtet und lässt die Rautengrube mehr oder weniger unbe
deckt. Valvula cerebelli ist verhältnismässig am grössten bei *Hippoglossus*, wo sie fast an die Commissura posterior reicht. Ihre Form ist schon oben erwähnt worden. Dieselbe Form fand ich bei allen Repräsentanten dieser Familie; aber die Grösse ist sehr variabel. In der Regel ist die Valvula bedeutend kleiner als beim Heilbutt. Bei *Solea* ist sie sogar so winzig, dass sie kaum gesehen werden kann, wenn das Gehirn mit weggenommenem Dach der Lobi optici gerade von oben betrachtet wird. Lobi posteriores treten wenig vor, werden stets durch eine die Rautengrube überbrückende, schmale Commissur mit einander verbunden. Lobi inferiores sind mittelmässig entwickelt. Hypophysis bedeckt immer das ganze Tuber cinereum. Die Infundibulardrüse erstreckt sich von der Hypophysis mehr oder weniger weit hinter die Lobi inferiores. Ihre Form kann auf Fig. 48b gesehen werden.

Fam. Siluridæ.

Untersucht sind: *Ictalurus lophius* (Cope) und *Macrones gulio* (Ham.).

Fam. Scopelidae.

Untersucht: Scopeli sp. (zwei Arten aus dem Mittelmeere), Saurida tumbl (Bl.).

Die Gattung Scopelus (IV, 50) erinnert in Bezug auf das Gehirn in mehreren Hinsichten an die Siluriden. Die Riechläppchen verhalten sich doch ganz anders, indem sie nach dem Salmonidtypus gebaut sind. Die Stammloben sind verhältnismässig sehr klein, und es fehlt ihnen jede Spur der Hauptfurchen. Das Mittelstück des Hinterhirns ist kräftig entwickelt, legt sich nach vorn dicht ans Mittelhirn und reicht fast bis an die Stammloben. Es hat sich auch nach hinten gestreckt und trägt ein wenig zur Bedeckung der Rautengrube bei. In Bezug auf die dahinter liegende Bildung, die die lange Fossa rhomboidealalis fast ganz und gar bedeckt und sich auch auf die Lobi optici neben das Mittelstück des Hinterhirns gelegt hat, muss ich gestehen, dass sie mir noch nicht völlig bekannt ist. Entweder ist sie dadurch entstanden, dass die kräftig entwickelten Seitenteile des Cerebellum und die ebenfalls sehr grossen hinteren Loben, die durch eine breite Commissura loborum posteriorum vereinigt werden, mit einander verschmolzen sind, oder dadurch, dass die hinteren Loben eine verhältnismässig gigantische Größe erreicht haben und die ersteren ganz und gar bedecken. Für die erstere Deutung spricht der Umstand, dass bei einer der Gattung Sudis wahrscheinlich zuge-
hörigen Art (aus dem Mittelmeere), die in Bezug auf das Gehirn der *Saurida tumbil* sehr nahe steht, die Seitenteile des Hinterhirns ein wenig grösser (als bei dieser) sind und mit den grossen Lobi posteriores zum Teil zusammengeschmolzen zu sein scheinen. Valvula cerebelli erreicht ungefähr die Mitte der Höhle des Mittelhirns und ist mit einer breiten, seichten Längsfurche und einer ebenfalls seichten, fast undeutlichen Querfurche versehen. Lobi inferiores sind klein; Hypophysis dagegen gross und bedeckt ganz und gar Tuber cinereum. Die Infundibulardrüse ist gross, fast rundlich und erreicht den hinteren Rand der Lobi inferiores.

Ein in einigen Hinsichten wahrscheinlich ursprünglicheres Gehirn hat *Saurida tumbil* (IV, 51). Der hauptsächliche Unterschied von *Scopelus* ist im Hinterhirn und in Lobi posteriores zu suchen. Der Mittelteil des ersteren ist klein und nach vorn gerichtet; die Seitenteile sind verhältnismässig gross und erreichen fast dieselbe Höhe als der Mittelteil, legen sich aber nicht auf die Lobi optici hinauf. Lobi posteriores sind ebenfalls gross und durch eine breite Commissura lobarum posteriorum mit einander verbunden, erreichen aber nicht dieselbe Höhe wie das Hinterhirn und sind nicht mit den Seiten- teilen desselben verschmolzen. Valvula cerebelli, Saccus vasculosus und Lobi inferiores verhalten sich wie bei *Scopelus*.

Fam. Salmonidae.

Untersucht sind:

- Coregonus labarctus (L.),
- *C. albula* (L.),
- *Thymallus vulgaris* NILSS.,
- Osmerus eperlanus (L.),
- *Mallotus villosus* (O. F. MüLL.),
- [Argentina silus (Ascan.)]

Taf. IV, Fig. 52—54.

Bei sämtlichen untersuchten Salmoniden sind die Riechlappen relativ gross, in die Länge gezogen und (natürlicherweise) nach dem Salmonidtypus gebaut. Die Stammloben sind verhältnismässig sehr klein, und Hauptfurchen fehlen ihnen immer ganz und gar. Das Hinterhirn erhebt sich immer über die Lobi optici, ist übrigens sowohl in der Form als in der Grösse bedeutenden Wechselungen unterworfen. Bei *Osmerus* (und *Mallotus*) ist das Mittelstück ziemlich klein und legt sich ein wenig vorwärts ans Mittelhirn gedrückt. Bei *Coregonus*
malme, studien über das Gehirn der knochenfische.

Im Zusammenhang mit den Salmoniden und Scopeliden will ich einige Worte die Sternoptychidae betreffend beifügen. Ich untersuchte zwei Repräsentanten dieser Familie: eine Art der Gattung Sternoptyx (aus dem Mittelmeere) und Chauliodus Sloanii Bl.

Bei der ersteren (IV, 56) verhalten sich die Riechlappen und die Stammloben fast wie bei Scopelus. Das Mittelhirn ist stark entwickelt, breit und hoch. Der Mittelteil des Hinterhirns ist winzig und legt sich dicht ans Mittelhirn, erreicht aber nicht dieselbe Höhe wie dieses. Die relativ grossen Seitenteile strecken sich weit nach den Seiten aus. Lobi posteriores sind ebenfalls gross (doch nicht verhältnismässig so gross als bei Saurida) und wahrscheinlich durch eine die Rautengrube überbrückende Commisur verbunden. Lobi inferiores sind klein; die Infundibulardrüse dagegen gross und weit hinter diese reichend.

In Bezug auf das Gehirn unterscheidet sich Chauliodus (IV, 55) von Sternoptyx hauptsächlich durch das Hinterhirn. Dies hat eine starke Entwicklung erlangt. Der Mittelteil der-
selben streckt sich weit nach vorn (doch nicht bis an die Stammloben) und ist dicht ans Mittelhirn gedrückt. Die ebenfalls kräftigen Seitenteile setzen sich nicht vom Mittelteil deutlich ab. In gewissem Masse verhält sich *Chauliodus* zu *Sternopyx* wie *Scopelus* zu *Saurida*.

Demselben Typus gehört wahrscheinlich auch die Fam. Stomiatidae. Ich hatte nur Gelegenheit ein kleines Exemplar einer der Gattung *Astronesthes* zugehörigen Art zu untersuchen. Ihr Gehirn erinnerte in hohem Grade an dasjenige des *Chauliodus*.

Fam. Esocidae.

Untersuchter Repräsentant: *Esox lucius* L. (V, 57).

Fam. Scombresocidae.

Untersucht sind: *(Belone vulgaris* Flem.),
Hemirhamphus intermedius Cant.
und *Exocoeti* sp.

Fam. Clupeidae.

Untersucht sind:

Taf. V, Fig. 58 und 59.

Fam. Cyprinidae.

Untersuchte Repräsentanten:

- *Cyprinus carassius* L.,
- *C. auratus* L.,
- *Gobio fluviatilis* Flem.,
- *Abramis brama* (L.),
- *A. ballerus* (L.),
- *A. vimba* (L.),
- *A. blicca* (Bł.),
- *Leuciscus rutilus* (L.),
- *Cobitis barbatula* L.,
- *C. tænia* L.

\(^1\) In noch höherem Grade ist dies nach der von Klaatsch (a. a. O.) gelieferten Fig. der Fall bei *Barbus vulgaris* Flem. und nach Fritsch bei *Cyprinus carpio* L.

Fam. Characinidæ.

Fam. Murænidæ.

Untersucht sind:

- *Muræna helena* L.,
- *Anguilla vulgaris* Flem.
- *Ophichthys dicellurus* (Richards).

Taf. V, Fig. 67 und 68.

Die Riechlappen haben eine ungewöhnliche Grösse erreicht und sind halb oder mehr als halb so breit als die Stammloben. Die Riechnerven sind beträchtlich dick. Die Stammloben sind ebenso breit oder breiter als das Mittelhirn und erheben sich über dasselbe. Bei *Anguilla* ist jeder Locus fast rechteckig mit den äusseren Ecken abgerundet. Die Hauptfurchen sind deut-

Fam. Syngnathidae.

Untersuchte Repräsentanten:
Nerophis aequoreus L. und Hippocampus antiquorum LEACH.
Taf. V, Fig. 70.

Die Riechlappen sind mittelmässig entwickelt und nach dem Salmonidtypus gebaut. Die Riechnerven verlaufen eine längere Strecke neben einander. Die Stammloben verschmälern sich nach vorn und erheben sich nicht über das Mittelhirn. Sie erinnern nicht wenig an die des Hechtes, und wie bei diesem

Fam. Gymnodontes.

Untersuchter Repräsentant: Tetraodon lunaris Bleek.

Taf. V, Fig. 71.

Fam. Sclerodermi.

Von den beiden untersuchten Repräsentanten dieser Familie stimmt der eine, Balistes aureolus Richards., in Bezug auf das Gehirn fast ganz und gar mit Tetraodon überein. Die medialen Teile der Stammloben sind doch verhältnismässig ein wenig

III.

doch nur zwei auch in anderen Hinsichten sehr verschiedene Arten untersuchte.

Wie am häufigsten die Gattungen, die zu derselben Familie gezählt werden, mit einander mehr oder weniger übereinstimmen, so sind auch nahestehende Familien (die zu derselben Abteilung geführt werden) in Bezug auf das Gehirn nicht selten einander sehr gleich. Da ich schon mehrmals diese Thatsache erwähnt habe, kann ich mich hier darauf beschränken einige der ausgezeichnetsten Exempe1 zu nennen, z. B. Scorpaenidae, Cottidae und Cataphracti, Atherinidae und Mugilidae, Labridae und Pomacentridae, Salmonidae und Scopelidae, Esocidae und Scombresocidae, Gymnodontes und Sclerodermi.

Für die einzelnen Unterordnungen (Acanthopterygii, Anacanthini etc.) habe ich durchgehend charakteristische Unterschiede in der Form des Gehirns nicht finden können. Einige Eigentümlichkeiten gehören doch hauptsächlich dieser oder jener Unterordnung zu und sind bei den meisten Familien derselben vorhanden.

Für die Stachelflosser z. B. gilt folgendes:

Die Riechlappen sind gewöhnlich verhältnismässig klein und gehören fast immer dem Salmonidtypus zu.

An den Stammlöben findet sich in der Regel wenigstens ein Furchenpaar (die Hauptfurchen).

Wenn die Valvula eine mehr bedeutende Grösse erreicht hat, ist sie immer eine mit tiefer Querfurche versehene Valvula quadrigemina oder eine Carangidvalvula.

Lobi posteriores sind in der Regel klein, und getrennte Lobi vagales sind nie vorhanden.

Die Infundibulardrüse ist oft ziemlich klein fehlt aber höchst selten ganz und gar.

Bei den Physostomen sind die Riechlappen in der Regel entweder gestielt oder haben eine im Verhältnis zu den Stammloben beträchtliche Grösse erreicht.

Die Stammloben sind entweder gross und mit mehreren Unebenheiten und Furchen versehen, unter denen man oft ein Paar Hauptfurchen unterscheiden kann, oder klein und ganz und gar ohne deutliche Furchen. So scharf markierte Hauptfurchen wie bei der Mehrzahl der Stachelflosser finden sich nur bei den Mureniden.

Wenn die Valvula eine mehr bedeutende Grösse erreicht, ist sie entweder eine mit seichter Querfurche versehene Valvula quadrigemina oder eine Abramisvalvula.

Lobi posteriores erreichen oft eine beträchtliche Grösse und getrennte Lobi vagales entwickeln sich nicht selten.

Die Infundibulardrüse ist bei einigen im Verhältnis zu den unteren Loben sehr gross, bei anderen ziemlich klein oder winzig. Nicht selten fehlt sie ganz und gar.

Die Plectognathen stimmen fast ganz und gar mit einigen Stachelflossern überein.

Die Bäuchelkiemer sind auf einer wahrscheinlich ursprünglicheren Entwicklungsstufe stehen geblieben und erinnern in Bezug auf das Gehirn sowohl an die Leptocephaliden als an einige niedrig stehende (?) Stachelflosser (z. B. Gasterosteidæ).

Ein wenig anders verhält sich die Valvula. Ich beobachtete zuweilen innerhalb derselben Familie (z. B. Cataphracti) sowohl (bei einigen Arten) eine mit nur einer Längsfurche versehene Valvula (Gadidvalvula) als auch (bei anderen) eine Valvula quadrigemina. In anderen Fällen (z. B. innerhalb der Fam. Percidae) fand ich teils eine Valvula quadrigemina, teils eine Carangidvalvula. Wenn es richtig ist anzunehmen, dass die Valvula quadrigemina sich aus der einfachen Gadidvalvula und die Carangidvalvula aus der ersteren entwickelt hat, so ist dieses Verhältnis ja leicht zu erklären. Einige Arten haben eine höhere Entwicklungsstufe erreicht, während die anderen auf einer niedrigeren stehen geblieben sind. Auch ist die Carangidvalvula bei Serranus viel kleiner und viel weniger entwickelt als z. B. bei den Spariden.

Dasselbe ist der Fall mit der Infundibulardrüse. Wie schon mehrmals erwähnt worden, fehlt sie bei einigen Familien ganz und gar. Innerhalb anderer zeigt sie dieselbe Form und fast dieselbe relative Grösse bei allen untersuchten Repräsentanten, z. B. Salmonidae, Labridae, Blenniidae und Clupeidae. Bei den Sceliffischen ist zwar die Form dieselbe aber die re-
lative Grössen bei verschiedenen Arten sehr verschieden. Innerhalb der Fam. **Percidae**, **Cataphracti** u. a. wechselt sie sowohl in der Form als in der Grösse und Lage (vergl. Seit. 20 und 26).

Für die Fam. **Gadidae**, **Siluridae**, **Cyprinidae** und **Clupeidae** bieten **Lobi posteriores** gute Merkzeichen dar. Innerhalb der Familie der Karpfenfische sind sie zwar grossen Wechselungen unterworfen, haben doch immer ein sehr charakteristisches Ausschen.

Die relative Länge der **Rautengrube** ist oft innerhalb derselben Familie dieselbe, z. B. **Gadidae**, **Labridae**, **Percidae**.

Auch die Form und die relative Grössen der **unten Loben** sind oft bei nahestehenden Gattungen und Familien übereinstimmend (z. B. **Elacate** und **Coryphaena**, **Labridae** und **Pomacentridae**). Ein Beispiel entgegengesetzter Art liefern **Perea** und **Lates**.

Zuletzt will ich mit einigen Worten die Frage berühren, wie man sich die Entwicklung komplizierterer Knochenfischgehirne aus ursprünglicheren Formen vorstellen kann, und diese Sache mit einem Beispiel zu beleuchten versuchen. Als ein sehr ursprüngliches will ich ein Knochenfischgehirn annehmen, das sich durch ziemlich grosse, nach dem Salmonidotypus gebaute Riechlappen, ziemlich kleine, mit keinen Hauptfurchen versehene Stammloben, ein verhältnismässig kleines Hinterhirn, das entweder wulstförmig (wie bei **Leptocephalus**) ist oder aus einem kleinen, weder nach vorn noch nach hinten gerichteten Mittelstück und im Verhältnis zu diesem grossen, wenig abgesetzten Seitenteilen besteht, eine kleine Gadidvalvula, wenig vortretende und durch keine Commissura lorum posteriorm verbundene hintere Loben, verhältnismässig kleine Lobi inferiores und eine vom Tuber cinereum bis zum hinteren Rand der unteren Loben sich streckende Infundibulardrüse auszeichnet. Dieser (hypothetischen) Form sehr nahestehende Gehirne, die sich aus derselben leicht ableiten lassen, finden sich bei so verschiedenen Fischen wie **Nerophis aequoreus**, **Leptocephalus Koelilkeri**, **Osmerus eperlanus**, **Atherina hepsetus** und **Gasterostens aculeatus**. Dass aber das Gehirn, eine so komplizierte Bildung, auf verschiedenen Wegen zu einer so beträchtlichen Übereinstimmung kommen kann, ist wohl kaum denkbar. Die Körperform und die Lebensweise oben erwähnter Fische sind so verschieden, dass sie zu diesem
Zwecke in keiner Hinsicht beigetragen haben können. Um diese Thatsache zu erklären ist es, wie es mir scheint, ganz nothwendig anzunehmen, dass diese Fische in Bezug auf das Gehirn auf einem ziemlich ursprünglichen Standpunkt stehen geblieben sind.

Von dieser (hypothetischen) ursprünglichen Form weicht das Gehirn des Stiutes (Osmerus eperlanus) hauptsächlich dadurch ab, dass die Riechlappen und das Mittelhirn im Verhältnis zu den Stammloben grösser geworden sind, die Valvula sich weiter nach vorn gestreckt und eine Querfurche erhalten, der Mittelteil des Hinterhirns ein wenig in der Grösse zugenommen hat und die ein wenig grösseren Lobi posteriores durch eine Commisuur mit einander verbunden worden sind. Von der bei Osmerus vorkommenden Form lässt sich das Gehirn bei allen übrigen untersuchten Salmoniden leicht ableiten. Am weitesten hat sich Thymallus entfernt.

Fast in derselben Richtung ist die Entwicklung bei Saurida gegangen. Der Mittelteil des Hinterhirns legt sich hier ein wenig nach vorn, und die Lobi posteriores haben mehr in der Grösse zugenommen.

Wie ich schon oben angedeutet, ist es sehr wahrscheinlich, dass das eigentümliche Gehirn bei Scopelus durch die enorme Vergrösserung der hinteren Loben und der Seitenteile des Hinterhirns aus einer der bei Saurida vorkommenden sehr ähnlichen Form entstanden ist. In Bezug auf die Valvula, die unteren Loben und die Infundibulardrüse stimmt sowohl diese Gattung als Saurida mit den Salmoniden überein.

Umstand, dass wir innerhalb der Fam. Cyprinidae, deren Gehirn so charakteristisch ist, einige Arten gefunden haben, deren Riechlappen fast unmittelbar vor den langen und ziemlich schmalen Stammloben liegen, während sie bei den übrigen durch beträchtlich lange Tractus olfactorii mit den breiten Stammloben verbunden sind. Die unteren Loben sind bei Ictalurus viel kräftiger entwickelt als bei Saurida, und wie so oft der Fall ist, so hat eine Vergrößerung derselben eine bedeutende Verkleinerung der Infundibulardrüse hervorgerufen.

Um das Verhältnis zwischen den Fam. Salmonidae, Scopelidae und Siluridae in Bezug auf das Gehirn zu verdeutlichen füge ich nebenstehende Figur bei. Ich habe an derselben auch die Fam. Sternoptichidae mitgenommen, weil sie zweifellos demselben Entwicklungsgebiet angehört.

![Diagram](image-url)

Dass diese Familien wahrscheinlich mit einander sehr verwandt sind, dürfte daraus hervorgehen, dass die ichthyologischen Verfasser sie auf die eine oder andere Weise neben einander zu stellen versucht haben. Während einige, z. B. A. Günther, Siluridae und Scopelidae neben einandergeführt und Salmonidae weit davon entfernt, haben andere, z. B. W. Lilljeborg, Salmonidae und Scopelidae neben einander und Siluridae weit davon gestellt. Wenn meine Deutung vom Gehirn richtig ist, so stehen die Salmoniden in Bezug darauf der ursprünglichen Form am nächsten, und dasselbe ist wohl auch der Fall in anderen Hinsichten, z. B. in Bezug auf den Eileiter
den Kiemendeckelapparat.

\[1\) Vergl. H. F. E. Jungerse, Bidrag til Kundskaben om Kjønsorganernes Udvikling hos Benfiskene. Kjøbenhavn 1889.\]
Mit diesem Beispiel\(^1\) will ich zu zeigen versucht haben, dass das Studium der äusseren Form des Gehirns bei den Knochenfischen, ebenso wohl als anderer Organe, zur richtigen Auffassung der Verwandtschaften beitragen kann. Die Verschiedenheiten in der makroskopischen Anatomie des Gehirns haben zweifellos eine Bedeutung für das System. Aber nach diesen ein System aufzustellen ist doch (wie jede Systematisierung nach einzelnen Organen) von ziemlich geringem Wert, besonders auch weil eine so winzige Zahl der bisher beschriebenen Fische uns in Bezug auf das Gehirn noch bekannt sind.

Es dürfte mir doch erlaubt sein die von mir untersuchten Fische in einige durch die Form des Gehirns ausgezeichnete Typen zusammenzustellen. Einige sehr freistehende Formen — z. B. Cepola, Gobiesox, Erythrinus — müssen doch hierbei ganz und gar ausser Rechnung gelassen werden.

Um schon mehrmals erwähnte Verhältnisse nicht zu wiederholen, will ich die Merkmale jedes Typus nur in der grössten Kürze andeuten und übrigens auf die oben gelieferten Beschreibungen der einzelnen Familien hinweisen.

Fam. Percidae (mit Ausnahme der Pristipomatiden).

Der Sparidtypus. Vom vorstehenden hauptsächlich durch die nach dem Sparidtypus gebauten Stammloben und die grosse Carangidvalvula unterschieden.

Fam. Sparidae.

Fam. Pomacentridae, Squamipinnes und Labridae.

\(^1\) Ein sehr interessantes Beispiel derselben Art bieten die Fam. Carangidae, Scombridae, Coryphaenidae und Acanthidae dar, und ein anderes viel leicht Fam. Pristipomatidae, Squamipinnes, Pomacentridae und Labridae.
Zwischen diesen drei Typen oder vielleicht nur zwischen Percidtypus und Labridtypus bildet die Unterfam. Pristipomatidae eine Übergangsform.

Trigla (nebst Prionotus) und Plectognathii.

Fam. Cataphraeici, Cottidae (mit Ausnahme von Trigla und Prionotus) und Blenniidae.

Von diesem Typus weicht die Fam. Scorpaenidae nur wenig ab (vergl. Seit. 21 und 24).

Zerfällt in Bezug auf die Stammloben in zwei Varianten.

Fam. Gobiidae.

Fam. Carangidae, Acromiidae, Scrombidae und Corypheneidae.

Einer Variante dieses Typus gehört wahrscheinlich Sillago an. Vielleicht eine Übergangsform zum Cottidtypus(?).

Fam. *Gasterosteidae, Atherinidae, Mugilidae und Sphyraenidae.*

Erinnert in mehreren Hinsichten an einige Physostomen.

Mit diesem stimmt die Fam. *Syngnathidae* fast ganz und gar überein.

Der Gadidtypus. Siehe Seite 48 und 32.

Fam. *Gadidae* nebst *Macrurus* und *Ophidium.*

Ein wenig abweichend ist *Ammodytes* (vergl. Seite 34).

Der Pleuronectidtypus. Vergl. Seite 48 und 34.

Erinnert ein wenig an den Cottidtypus.

Fam. *Pleuronectidae.*

Der Esocidtypus. Vielleicht nur als eine Variante des Salmonidtypus anzusehen. Von diesem durch die kurzen Riechlappen, die verhältnismässig grösseren Stammloben, kleine Lobi posteriores und das Fehlen einer Infundibulardrüse unterschieden.

Fam. *Esocidae* und *Scombresocidae.*
Der Clupeidtypus. Riechlappen sitzend, klein, in die Länge gezogen. Stammloben klein, ohne Hauptfurchen. Das Hinterhirn legt sich weder nach vorn ans Mittelhirn, noch nach hinten über das verlängerte Mark; die Seitenteile gross, aber nicht scharf abgesetzt. Valvula eine Valvula quadrigemina mit seichter Querfurche. Lobi posteriores kurz und hoch und durch eine Commissura lobarum posteriorum verbunden. Infundibulardrüse winzig und zart. — Ist besonders durch das eigentümliche Mittelhirn (Seite 40) ausgezeichnet.

Fam. Clupeidae.

Fam. Cyprinidae.

Fam. Murænidae.
Erklärung der Abbildungen.

Tafel I.

Fig. 1a) *Lates colonorum*. Das Gehirn von oben gesehen. B. o. Riechlappen, L. h. Stammloben, L. o. Lobi optici, C. Hinterhirn, P. c. Seitenteile des Hinterhirns, M. o. verlängertes Mark.

3a) *Lepisovenca sandra*. Das Gehirn von oben.

3b) *Derselbe* (dasselbe Exemplar). Lobi inferiores, Saccus vasculosus und Tuber cinereum.

4) *Anthias sacer*. Das Gehirn von oben.

5) *Serranus cabrilla*. Valvula cerebelli.

8) *Derselbe*. Das Gehirn von oben.

9) *Scorpaena porcus*. Das Gehirn von oben.

10a) *Agriopus lencopoeilus*. Das Gehirn von oben.

10b) *Derselbe* (dasselbe Exemplar). Valvula cerebelli und Tori semicirculares.

11) *Sebastes riciparus*. Das Gehirn von oben.

12) *Daetlyopterus collitus*. Das Gehirn von oben.

13) *Peristethus cataphractum*. Das Gehirn von oben.

14a) *Cottus scorpius*. Das Gehirn von oben.

14b) *Derselbe*. Das Gehirn von unten.

15) *Trigla gurnardus*. Das Gehirn von oben.

16a) *Caranassus trachurus*. Das Gehirn von oben.

16c) *Derselbe* (dasselbe Exemplar). Lobi inferiores.

Tafel II.

Fig. 15) *Trigla gurnardus*. Das Gehirn von oben.

16a) *Caranassus trachurus*. Das Gehirn von oben.

16c) *Derselbe* (dasselbe Exemplar). Lobi inferiores.

Fig. 18a) *Elacate nigra.* Das Gehirn von oben. C. Hinterhirn. 2/4.

Tafel III.

Fig. 29a) *Sphyraena jello.* Das Gehirn von oben. 2/4.

29b) Dieselbe (dasselbe Exemplar). Das Mittelstück und der eine Seitenteil der Valvula. 2/4.

30a) *Atherina hepsctus.* Das Gehirn von oben. 3/4.

32a) *Agonostoma Forsteri.* Das Gehirn von oben. 2/4.

38b) Dieselbe. Lobi inferiores (L. i.), Infundibulardrüse (S. v.) und Tuber cinereum (T. c.). 2/4.

41) *Chedodon unimaculatus.* Die Stammloben und die Riechlappen. 2/4.

Fig. 44a) *Ammodites tobianus*. Das Gehirn von oben. \(\text{\(\frac{3}{4}\)}\)

> 44b) *Derselbe*. Valvula cerebelli (V) und Hinterhirn (C).

Tafel IV.

Fig. 45) *Gadus morrhua*. Stammloben (von oben). \(\text{\(\frac{2}{3}\)}\).

> 46a) *Raniceps raninus*. Das Gehirn von oben. B. o. Riechlappen. \(\text{\(\frac{2}{3}\)}\).

> 46b) *Derselbe*. Das Gehirn von unten. \(\text{\(\frac{2}{3}\)}\).

> 47) *Pleuronectes platessa*. Das Gehirn von oben. \(\text{\(\frac{2}{3}\)}\).

> 48a) *Hippoglossus vulgaris*. Valvula cerebelli. \(\text{\(\frac{3}{4}\)}\).

> 48b) *Derselbe*. Lobi inferiores (L. i.), Infundibulardrüse (S. v.) und Hypophysis (H.). \(\text{\(\frac{2}{3}\)}\).

> 48c) *Derselbe*. Cerebellum & Medulla oblongata. \(\text{\(\frac{1}{4}\)}\).

> 49b) *Derselbe* (dasselbe Exemplar). Lobi inferiores (L. i.), Tuber cinereum (T. c.) und Infundibulardrüse (S. v.). \(\text{\(\frac{2}{3}\)}\).

> 50) *Scopelis sp.* Das Gehirn von oben. \(\text{\(\frac{4}{5}\)}\).

> 51) *Saurida tumbl*. Das Gehirn von oben. \(\text{\(\frac{2}{3}\)}\).

> 52) *Coregonus albula*. Das Gehirn von oben. \(\text{\(\frac{2}{3}\)}\).

> 53) *Coregonus lavaretus*. Das Gehirn von unten. \(\text{\(\frac{2}{3}\)}\).

> 54) *Thymallus vulgaris*. Das Gehirn von oben. \(\text{\(\frac{2}{3}\)}\).

> 55) *Chaullodus sloani*. Das Gehirn von oben. \(\text{\(\frac{4}{5}\)}\).

> 56) *Sternoptyx*. Das Gehirn von oben. \(\text{\(\frac{1}{4}\)}\).

Tafel V.

Fig. 57a) *Esox lucius*. Das Gehirn von oben. \(\text{\(\frac{1}{4}\)}\).

> 57b) *Derselbe*. Das Gehirn von unten. \(\text{\(\frac{2}{3}\)}\).

> 58a) *Clupea harengus*. Das Gehirn von oben. \(\text{\(\frac{2}{3}\)}\).

> 58b) *Dieselbe*. Lobi inferiores, Infundibulardrüse (S. v.) Tuber cinereum. \(\text{\(\frac{3}{4}\)}\).

> 59) *Clupea sprattus*. Das Gehirn von oben. \(\text{\(\frac{3}{4}\)}\).

> 60) *Aspinus rapax*. Das Gehirn von oben. T. i. Tuberculum impar, Tr. o. Tractus olfactorii. \(\text{\(\frac{2}{3}\)}\).

> 61) *Cyprinus carpio*. Das Gehirn von oben. B. o. Riechlappen, Tr. o. Tractus olfactorii, C. Hinterhirn, L. v. Lobi vagales. \(\text{\(\frac{4}{5}\)}\).

> 63a) *Abramis ballerus*. Lobi inferiores (L. i.) und Tuber cinereum (T. c.). L. o. m. äusserer (link.) Rand des Mittelhirns. \(\text{\(\frac{2}{3}\)}\).

> 63b) *Dieselbe*. Valvula cerebelli. \(\text{\(\frac{2}{3}\)}\).

> 64) *Leucaspis delineatus*. Das Gehirn von oben. B. o. Riechlappen L. h. Stammloben. \(\text{\(\frac{3}{4}\)}\).

> 65) *Cobitis taenia*. Das Gehirn von oben. Tr. o. Tractus olfactorii. \(\text{\(\frac{4}{5}\)}\).

> 66) *Erythrinus sp.* Das Gehirn von oben. \(\text{\(\frac{3}{4}\)}\).
MALME, STUDIEN ÜBER DAS GEHIRN DER KNOCHENFISCHE.

Fig. 67a) _Anguilla vulgaris_. Das Gehirn von oben. B. o. Riechlappen, L. h. Stammlöben, L. o. Mittelhirn, C. Hinterhirn, L. p. Lobi posteriores. ⁷⁄₄.

 67b) _Dieselbe_. Das Gehirn von unten. C. Hinterhirn. ²⁄₄.

68) _Opchichthys dicellurus_. Das Gehirn von oben. ²⁄₄.

69) _Leptocephalus Koellikeri_. Das Gehirn von oben. ⁴⁄₄.

70a) _Nerophis eбуrencus_. Das Gehirn von oben. ³⁄₄.

70b) _Dieselbe_. Das Gehirn von unten. ³⁄₄.

71a) _Tetraodon lunaris_. Das Gehirn von oben. ³⁄₄.

71b) _Daselbe_ (dasselbe Exemplar). Lobi inferiores, Saccus vasculosus & Tuber cinereum. ³⁄₄.
MITTEILUNGEN

DES

ORNITHOLOGISCHEN KOMITEES

DER

KÖNIGLICHEN SCHWEDISCHEN AKADEMIE DER WISSENSCHAFTEN.

IV.

(EINGEREICHT AM 9. SEPTEMBER 1891 DURCH F. A. SMITT.)

STOCKHOLM, 1892.
KUNGL. BOKTRYCKERIET, F. A. NORDSTEDT & SÖNER.
12.

Ornithologische Angaben
für 1887
aus
derschiedenen Orten in Schweden.
(Bearbeitung von Dr. C. R. Sundström.)

Vorwort.

Wie das Komitee schon eine Zusammenstellung von dem grössten Teile der bis zum Januar 1887 eingesandten Beobachtungen veröffentlicht (nachdem jedoch verschiedene der ausführlicheren Mitteilungen schon früher im Besondern publizirt worden), will dasselbe nun eine ähnliche Darstellung der Angaben herausgeben, welche ihm für das Jahr 1887 zugekommen, wobei die Notizen der Leuchtturmwächter in einer besonderen Abteilung zusammengestellt worden. Auch einige Angaben für das vorhergehende Jahr sind in der Bearbeitung mit aufgenommen, da sie mit denen des Jahres 1887 eingesandt wurden; an einigen Stellen sind Mitteilungen eingeführt, die sich auf den Winter 1887—1888 beziehen, weil sie mit den am Schlusse des erstgenannten Jahres gemachten Beobachtungen zusammehängen.
Die Verteilung der Beobachter und Beobachtungsplätze auf die verschiedenen Statthalterschaften geht aus nachfolgender Übersicht hervor:

<table>
<thead>
<tr>
<th>Statthalterschaft</th>
<th>Beobachter</th>
<th>Beobachtungsplätze</th>
</tr>
</thead>
<tbody>
<tr>
<td>Malmöhus</td>
<td>4</td>
<td>8</td>
</tr>
<tr>
<td>»</td>
<td>Kristianstad</td>
<td>1</td>
</tr>
<tr>
<td>»</td>
<td>Bleking</td>
<td>1</td>
</tr>
<tr>
<td>»</td>
<td>Gotland</td>
<td>1</td>
</tr>
<tr>
<td>»</td>
<td>Kalmar</td>
<td>4</td>
</tr>
<tr>
<td>»</td>
<td>Kronoberg</td>
<td>1</td>
</tr>
<tr>
<td>»</td>
<td>Jönköping</td>
<td>1</td>
</tr>
<tr>
<td>»</td>
<td>Halland</td>
<td>4</td>
</tr>
<tr>
<td>»</td>
<td>Göteborg u. Bohus</td>
<td>5</td>
</tr>
<tr>
<td>»</td>
<td>Elfsborg</td>
<td>2</td>
</tr>
<tr>
<td>»</td>
<td>Skaraborg</td>
<td>2</td>
</tr>
<tr>
<td>»</td>
<td>Östergötland</td>
<td>7</td>
</tr>
<tr>
<td>»</td>
<td>Södermanland</td>
<td>1</td>
</tr>
<tr>
<td>»</td>
<td>Stockholm</td>
<td>2</td>
</tr>
<tr>
<td>»</td>
<td>Upsala</td>
<td>2</td>
</tr>
<tr>
<td>»</td>
<td>Örebro</td>
<td>1</td>
</tr>
<tr>
<td>»</td>
<td>Vemmland</td>
<td>7</td>
</tr>
<tr>
<td>»</td>
<td>Gefleborg</td>
<td>2</td>
</tr>
<tr>
<td>»</td>
<td>Jemtland</td>
<td>3</td>
</tr>
<tr>
<td>»</td>
<td>Westerbotten</td>
<td>1</td>
</tr>
<tr>
<td>»</td>
<td>Norrbotten</td>
<td>1</td>
</tr>
</tbody>
</table>

Summa: Beobachter 51, Beobachtungsplätze 62.
I. Allgemeiner Teil.

Angaben über die Beobachtungsplätze.

Statthalterschaft **Malmöhus**.

Farhult, Pfarrgemeinde 15,6 Kilometer im Westsüdwesten von der Stadt Engelholm.

Swedberga, Gut in der Pfarrgemeinde Kattarp im Nordnordosten von der Stadt Helsingborg.

Wedelsbäck (C. Möller), Gut in der Pfarrgemeinde desselben Namens.

Haglösa, Dorf in der Pfarrgemeinde Lilla Slågarp 22 Kilometer östlich von der Stadt Malmö.

Öfwedskloster (Graf Tage Thott), Gut in der Pfarrgemeinde Öfwed 31 Kilometer im Osten von der Stadt Lund.

Statthalterschaft **Kristianstad**.

Widtsköfte (Gr. Tage Thott), Gut in der Pfarrgemeinde Widtsköfte 23,5 Kilometer südlich von der Stadt Kristianstad.

Statthalterschaft **Gotland**.

Skogsholm (A. W. Ahlén).

Statthalterschaft **Kalmar**.

Ölands södra udde (Y. Sjöstedt), Leuchtturmplatz an der südlichsten Spitze der Insel.

Kärcholm (C. G. Areén), kleine Insel an der östlichen Seite von Öland.

Rosenfors, Eisenwerk in der Pfarrgemeinde Målilla im Süden von der Stadt Westerwik.
Statthalterschaft **Kronoberg**.

Åsnen (C. Wacklin), See im mittleren Teile der Statthalterschaft.

Statthalterschaft **Halland**.

Halland (H. Nilsson und Körner), Landschaft am mittleren Teile der westlichen Küste von Schweden.

Statthalterschaft **Göteborg und Bohus**.

Bohuslän (O. Körner), Landschaft am nördlichen Teil der westlichen Küste von Schweden.

Sonne (S. F. Wetterberg), Pfarrgemeinde in der Landschaft Bohuslän 50 Kilometer von der Stadt Uddevalla.

Statthalterschaft **Elfsborg**.

Dalskog, Pfarrgemeinde im östlichen Teil der Landschaft Dalsland.

Statthalterschaft **Östergötland**.

Linköping (N. C. Kindberg), Stadt im mittleren Teil der Landschaft.

Åby (N. C. Kindberg), Dorf im nördlichen Teil der Landschaft 8 Kilometer nördlich von der Stadt Norrköping.

Statthalterschaft **Södermanland**.

Wäderbrunn, Staatsgut in der Pfarrgemeinde Bergshammar 8 Kilometer von der Stadt Nyköping.

Statthalterschaft **Stockholm**.

Statthalterschaft **Wermland**.

Kristinehamn (G. E. Ringius), Stadt am nordöstlichen Ufer des Wener-Sees
Warnum (G. E. Ringius), Pfarrgemeinde um die Stadt Kristinehamn.

Wäse (S. W. Tenow) Gerichtsbezirk und Pfarrgemeinde am nördlichen Ufer des Wener-Sees zwischen den Städten Kristinehamn und Karlstad.

Brattfors, Pfarrgemeinde nahe der Stadt Filipstad.

Statthalterschaft Jemtland.

Sweg (K. Fredenberg), Pfarrgemeinde in der Landschaft Herjedalen um die Ljusne-Elf.

Berg (P. Olsson), Pfarrgemeinde am östlichen Ende des Storsjön 50 Kilometer von der Stadt Östersund.

Statthalterschaft Westerbotten.

Burträsk (P. F. M. von Weuerkop), Dorf in der gleichnamigen Pfarrgemeinde.

Was die übrigen, in dem Folgenden erwähnten Beobachtungssätze anbetrifft, siehe Mitteilungen des Ornithologischen Komites, II (Seite 6—21) und III (Seite 68—71).
II. Specieller Teil.

A. Angaben über die Verbreitung der Vogelarten.

Turdus musicus.

Statthalterschaft **Skaraborg**: Udenäs (G. Barthelson). Kam den 29. März.

Statthalterschaft **Gefleborg**: Bjuräker (K. Fredenberg). Wurde zum erstenmal am 27. April gehört.

Turdus iliacus.

Turdus viscivorus.

Turdus pilaris.

Statthalterschaft **Göteborg und Bohus**: Umgegend von Göteborg (E. Lignell und C. O. Bothén). Den 8. Mai 3 Stücke auf Höno in den Schären. — Sanne (S. F. Wetter-

Turdus merula.

Turdus torquatus.

Luscinia philomela.

Luscinia rubecula.

Luscinia suecica.

Luscinia tithys.

Luscinia phoenicurus.

Saxicola rubetra.

Saxicola oenanthe.

Cinclus aquaticus.

Regulus cristatus.

Accentor modularis.

Sylvia atricapilla.

Statthalterschaft **Kalmar**: Borgholm (E. G. Areen). Kam den (10.) Mai.

Sylvia hortensis.

Statthalterschaft **Göteborg** und **Bohus**: Sanne (S. F. Wetterberg). Zugvogel.

Statthalterschaft **Skaraborg**: Undenäs (G. Barthelson). Kam den 1. April.

Sylvia nisoria.

Sylvia cinerea.

Statthalterschaft **Kalmar**: Borgholm (E. G. Areen). Kam den (10.) Mai. Ein Paar, welches sein Nest baute, wurde den

Sylvia curruca.

Phyllopseustes sibilatrix.

Phyllopseustes trochilus.

Phyllopusseustes abietina.

Hypolais icterina.

Calamoherpe schönobænus.

Lanius excubitor.

Statthalterschaft Wermland: Presterud (E. Wolff). Selten; 1 Stück im September geschossen.

Lanius collurio.

Muscicapa atricapilla.

Statthalterschaft **Jemtland**: Östersund (P. Olsson). Das erste Stück den 25 April.

Mucicapa grisola.

Troglodytes parvulus.

Statthalterschaft **Göteborg und Bohus**: Prestbol (S. F. Wetterberg). Strichvogel.
Orites caudatus.

Parus coeruleus.

Statthalterschaft **Göteborg und Bohus**: Prestbol (S. F. Wetterberg). Strichvogel.

Parus palustris.

Statthalterschaft **Kronoberg**: Gegend von Wexiö (C. Wacklin). Eier ausgebrütet den 24. Mai; die Jungen wurden
ungefähr 3 mal in der Minute mit Larven gefüttert; flügge den 18. Juni.

Parus cristatus.

Parus major.

Certhia familiaris.

Sitta europaea.
Statthalterschaft Jemtland: Östersund (P. Olsson). Ge-
schossen auf Frösön den 17. November; früher unbekannt für Jemtland.

Hirundo rustica.

Statthalterschaft Kalmar: Gegend um Borgholm (E. G. Areen). Ankunft: die ersten Individuen den 25. April, in
Scharren den 7. Mai. Eier den 1. Juni und 5 Juli. — Staats-
gut Horn (O. Eriksson). Kam den 30. April. Nachdem die
Jungen flügge geworden, bringt diese Art in grossen Scharren
die Nächte in dem Schilf von Hornsviken zu.
Wind einige Stücke; Abzug: Allgemein den 9. September,
das letzte Stück den 23. September.
Statthalterschaft Göteborg und Bohus: Gegend von Göte-
homborg (E. Lignell und C. O. Bothén). Kam am 3. Mai bei
Lerum an, wurde aber erst den 5. Mai in Göteborg gesehen.
Statthalterschaft Elfsborg: Wenersborg (G. von Hack-
witz). Ankunft: den 27. April 3 Stücke, welche bald weiter
zogen; den 7. Mai bei den Brüteplätzen. Dahlskog (Stock-
holms Dagblad). Ein weisses Exemplar mit rostbrauner Kehle,
bräunlich hellgrauem Rücken und hornbraunem Schnabel und
Beinen wurde den 5. September geschossen.
Statthalterschaft Östergötland: Rästorp (E. G:son Hjort).
Kam den 7 Mai. — Wadstena (W. A. Engholm). Ein Stück
den 1. Mai am Morgen; verschwand bald.
Statthalterschaft Upsala: Lillkyrka (K. M. Trysén). An-
Statthalterschaft Örebro: Hellefors (A. Giöbel). Kam
den 7. Mai.

Hirundo urbica.

Statthalterschaft **Bleking**: Hanö (M. P. Kronsjö). Sparsam.

Hirundo sp.

Hirundo riparia.

Motacilla alba.

— Staatsgut Horn (O. Erikson). Kam den 5. April.

Statthalterschaft **Skaraborg**: Undenäs (G. Barthelson). Kam den 12. April.

Motacilla flava.

Anthus obscurus.

Anthus pratensis.

Anthus arboreus.

Emberiza miliaria.

Emberiza citrinella.

Emberiza hortulana.

Emberiza schoeniclus.

Plectrophanes nivalis.

Passer domesticus.

Passer montanus.

Fringilla coelebs.

Fringilla montifringilla.

Coccothraustes vulgaris.

Statthalterna Malmöhus: Bökebergsslätt (O. Oto son). Brutete hier.

Linota chloris.

Linota cannabina.

SUNDSTRÖM, ORNITHOLOGISCHE MITTEILUNGEN.

Acanthis spinus.

Acanthis carduelis.

Pyrrhula europaea.

November; Individuen sind das ganze Jahr durch hier geblieben.

Pinicola enucleator.

Loxia sp.

Loxia curvirostra.

Sternschnuppe (Sturnus vulgaris).

Garrulius glandarius.

Pica rustica.

Statthalterschaft Gotland: (A. W. Ahlén). Sparsam; kommt nicht in der Nähe von Wisby vor, sondern erst in einer
Entfernung von ungefähr 10 Kilometer von der Stadt. »Skära« genannt.

Nucifraga caryocatactes.

derung hätte erklären können; meist sah man die Tannenhecher auf dem Boden, den Viehdrung durchsuchend. Nicht vor dem (25.) Oktober waren sie aus der Gegend verschwunden.

Statthalterschaft Wermland: Presterud (E. Wolff). Trat in kleineren Scharen vom Juni bis Oktober auf. — Karlstad (S. W. Tenow). Allgemein im Herbst. — Wäse (S. W. Te-

Corvus monedula.

Statthalterschaft **Göteborg und Bohus:** Sanne (S. F. Wetterberg). Zufällig auftretend.

Statthalterschaft **Upsala:** Lillkyrka (K. M. Trysén). Blieb ziemlich allgemein den ganzen Winter.

Statthalterschaft **Gefleborg:** Hudikswall (J. A. Wiström). Den 15. Mai ein Nest mit 6 Eiern und ein anderes mit 3 dito.

Corvus cornix.

Statthalterschaft **Bleking:** Hanö (M. P. Kronsjö). Sparsam.

Corvus corax.

Corvus frugilegus.

Ampelis garrulus.

Alauda alpestris.

Alauda arvensis.

Alauda cristata.

Alauda arborea.

Upupa epops.

Picus major.

Picus leuconotus.

Picus minor.

Picus martius.

Statthalterschaft **Göteborg und Bohus**: Prestbol (S. F. Wetterberg). Standvogel.

Picus viridis.

Statthalterschaft **Göteborg und Bohus**: (S. F. Wetterberg). Standvogel.

Ilynx torquilla.

Statthalterschaft **Skaraborg**: Undenäs (G. Barthelsson). Wurde den 29. April zum erstenmal beobachtet.

Cuculus canorus.

Statthalterschaft Gefleborg: Hudikswall (J. A. Wiström). Man hörte ihn zum erstenmal den 15. Mai um 4 Uhr nach-

Alcedo ispida.

Coracias garrula.

Cypselus apus.

Sanne (S. F. Wetterberg). Zugvogel.

Caprimulgus europæus.

Hybris flammea.

Strix aluco.

Strix tengmalmi.

Otus brachyotus.

Statthalterschaft Wermland: Presterud (E. Wolff). 1 Stück wurde zur Weihnachtszeit geschossen.

Statthalterschaft Jemtland: Östersund (P. Olsson). Auf Frösön geschossen.

Otus albigollis.

Bubo ignavus.

Falco peregrinus.

Falco subbuteo.

Falco aesalon.

Falco tinnunculus.

Astur palumbarius.

Astur nisus.

Milvus icinus.

Statthalterschaft Kronoberg: Gegend von Wexiö (C. Wacklin). Nest mit 2 Eiern auf Kronobergs Apelö; auch bei Morra Åreda.

Buteo vulgaris.

Buteo lagopus.

Statthalterschaft Halland: Norra Halland (O. Körner). Ein Stück wurde anfangs Oktober bei Tjolöholm geschossen.

Pandion haliaëtus.

Columba palumbus.

Columba åenas.

Culumba turtur.

Lagopus lapponicus.

Statthalterschaft Jemtland: Qwitsle (G. W. Dahlström). Sehr sparsam; nur eine einzige Familie wurde während der Jagdzeit angetroffen.

Tetrao tetrix.

Statthalterschaft Kalmar: Geg(l)end um Borgholm (E. G. Areén). Im Laubwalde 10--20 Kilometer südlich von Borgholm wurden in diesem Herbst ungefähr 10 Stück geschossen.

Tetrao urogallus.

Statthalterschaft Kronoberg: Geg(l)end von Wexiö (C. Wacklin). Den 14. Mai hatten die alten Männchen aufgehört

Tetrao urogallo-tetricides.

Bonasa betulina.

Statthalterschaft Jemtland: Qwitsle (G. W. Dahlström). Im Oktober eine Brut angetroffen; die Jungen klein für die Jahreszeit.

Perdix cinerea.

Statthalterschaft Wermland: Presterud (E. Wolff). 3 Bruten hier in diesem Sommer.

Otis tarda.

Charadrius hiaticula.

Charadrius minor.

Charadrius alexandrinus.

Charadrius pluvialis.

Charadrius squatarolal.

Vannellus vulgaris.

Strepsilas interpres.

Statthalterschaft **Kalmar**: Käreholm (E. G. Areen). Einige Paare brüten dort und einige auf einem kleineren Holm 2, 5 Kilometer südlicher. 4 Eier den 8—12 Juni.

Haematopus ostrealogus.

Scolopax rusticola.

Gallinago major.

Gallinago media.

Gallinago gallinula.

Tringa canutus.

Tringa subarquata.

Tringa alpina.

Tringa minuta.

Tringa temmincki.

Philomachus pugnax.

Numenius arquata.

Numenius phaeopus.

Limosa aegocephala.

Actitis hypoleucus.

SUNDSTRÖM, ORNITHOLOGISCHE MITTEILUNGEN.

Totanus fuscus.

Totanus ochropus.

Totanus calidris.

Totanus glareola.

Totanus glottis.

Grus communis.

Statthalterschaft Kalmar: Borgholm (E. G. Areen). Den 7. September nachmittags 6 Uhr zogen wenigstens 50 Stücke am Hafen vorbei nach Süden. — Staatsgut Horn (O. Erik-

Ciconia alba.

Ortygometra crex.

feld; als dasselbe abgemäht wurde, kam das Nest zum Vorschein, welches von dem Weibchen verlassen wurde, obschon Klee rund um dasselbe gelegt wurde.

Rallus aquaticus.

Fulica atra.

Gallinula chloropus.

Anser bernicla.

geschossen; bei Südwind, Sturm und hoher See begab sich der Vogel, welcher mager war, endlich ans Land.

Anser segetum.

Anser ferus. (?)

Anser albifrons.

Anser sp.

Tadorna vulpanzer.

Cygnus olor.

Cygnus musicus.

Statthalterschaft **Bleking**: Hanö (M. P. Krönsjö). Durchzugs vogel. Selten.

Cygnus sp.

Anas boschas.

Anas clypeata.

Anas acuta.

Anas querquedula.

Anas crecca.

Anas penelope.

Fuligula cristata.

Fuligula marila.

Fuligula ferina.

Clangula glaucion.

Statthalterschaft Göteborg und Bohus: (S. F. Wetterberg). Durchzugsvoegel.

Clangula glacialis.

Mergus serrator.

Graculus carbo.

Dysporus bassanus.

Sundström, ornithologische Mitteilungen.

Sterna nigra.

Sterna paradisea.

Sterna hirundo.

Larus ridibundus.

Larus canus.

Larus argentatus.

Larus leucopterus.

Larus glaucus.

Larus marinus.

Larus fuscus.

Colymbus cristatus.

Eudytes septentrionalis.

Eudytes arcticus.

Uria troile var. Iomvia.

Mergulus alle.

Alca torda.

Statthalterschaft Gefleborg: Hudikswall (J. A. Wiström). Früher ziemlich allgemein auf der Insel Grau, aber im Sommer 1887, selten, teils weil er verfolgt wurde, teils weil er die Menschen scheut, welche auf der Insel wohnen.
Ornithologische Beobachtungen
von
TAGE THOTT.

(Bearbeitung von Dr. C. Sundström.)

Der Beobachtungsbezirk umfasst den südwestlichen Teil von Skåne, und erstreckt sich im Norden bis Lund, im Osten bis Romeliklint, im Süden und Westen bis an die Küste.

Der östliche Teil besteht hauptsächlich aus Wald, abwechselnd mit fruchtbaren Äckern, und hat mehrere Seen, von denen der Uddinge-, Fjellfota- und Borringe-See die grössten sind.

Die Beobachtungen beziehen sich, wo nichts Weiteres angegeben ist, auf das Jahr 1887.

Turdus musicus.

Turdus iliacus.

Sehr zahlreich beim Herbstdurchzuge in der letzten Hälfte vom Oktober; hält sich auf denselben Stellen auf wie die vorhergehende Art.
Turdus viscivorus.
Sparsam beim Herbstdurchzuge im Oktober.

Turdus pilaris.

Turdus merula.

Turdus torquatus.
Sehr selten im Herbst.

Luscinia philomela.

Luscinia rubecula.
Brütet allgemein; überwintert recht zahlreich 1885, 86, 87. 6—7 Eier den 8.—19. Mai.

Luscinia suecica.
Luscina phoenicurus.

Saxicola rubetra.

Brütet sehr allgemein; scheint zuzunehmen. Zum erstenmal gesehen den 17. April. 5—7 Eier den 1.—6. Juni.

Saxicola oenanthe.

Cinclus aquaticus.

Kommt, wenngleich selten, fast jeden Winter vor, zum Beispiel 1885—86—87 bei der Sägemühle von Heckeberga.

Regulus cristatus.

Accentor modularis.

Sylvia atricapilla.

Sylvia hortensis.

Sehr allgemein. 5 Eier den 4.—10. Juni.
Sylvia nisoria.
Selten brütend aus Mangel an geeigneten Plätzen. 4 Eier den 15. Juni 1871 gefunden.

Sylvia cinerea.
Zahlreich brütend besonders in den Jahren 71—80, hat in den letzten Jahren etwas abgenommen. 5 Eier den 1.—10. Juni.

Sylvia currucu.
Recht allgemein brütend. 4—5 Eier den 5.—15. Juni.

Phyllopseustes sibilatrix.

Phyllopseustes trochilus.
Sehr allgemein; brütet zahlreich zwischen Heidekraut und Porsch auf den sich in den Wäldern befindlichen Mooren. 6—7 Eier den 1.—10. Juni.

Phyllopseustes abietina.
Allgemein im Herbst; brütet nicht.

Hypolais icterina.
Brütet sparsam; trat 80—83 zahlreicher auf. 5 Eier den 10.—18. Juni.

Calamoherpe schoenobaenus.
Brütet zahlreich an allen Seen, fehlt selten bei einer mit höheren Pflanzen bewachsenen Torfgrube oder einem grössern Graben. 4 Eier den 1.—10. Juli.

Calamoherpe arundinacea.
Brütet jetzt zahlreich bei allen Seen und scheint jährlich zuzunehmen; das Nest findet man gewöhnlich zwischen steifen

Lanius excubitor.

Zahlreich im Winter, kommt gewöhnlich anfangs November, bleibt bis im März.

Lanius collurio.

Muscicapa atricapilla.

Brütet nun zahlreich. Früher war er weniger allgemein; trat jedoch 1879 in Massen auf, was bis zum Jahr 84 fortduernte, wonach man eine Verminderung bemerkte. Wurde den 30. April gesehen. 6—7 Eier den 2.—8. Juni.

Muscicapa parva.

Muscicapa grisola.

Troglodytes parvulus.

Allgemein im Herbst und Winter, brütet sparsam; hat in den letzten Jahren abgenommen.

Orites caudatus.

Allgemein das ganze Jahr hindurch, zahlreich im Herbst. Brütete zahlreich in den Jahren 75—80, das Nest, welches

Parus coeruleus.

Parus palustris.

Allgemein. 6—10 Eier den 10.—25. Mai.

Parus ater.

Ziemlich allgemein in Tannennpflanzungen, welche sie selten verlässt, und wo sie auch brütet.

Parus major.

Sehr allgemein. 8—16 Eier den 10.—28. Mai.

Certhia familiaris.

Allgemein das ganze Jahr durch. 4—6 Eier den 10.—19. Mai.

Sitta europaea.

Allgemein das ganze Jahr durch. 5—6 Eier den 18.—20. April.

Hirundo rustica.

Allgemein. 5—6 Eier anfangs Juni.

Hirundo urbica.

Allgemein. 5—6 Eier anfangs Juni.
Hirundo riparia.

Zahlreich. Grosse Kolonien kommen in fast jeder Mergel- oder Sandgrube vor und vermehren sich jährlich. 5 Eier erst im Juni.

Motacilla alba.

Motacilla flava.

Anthus pratensis.

Allgemein. 5—6 Eier den 17.—20. Mai.

Anthus arboreus.

Emberiza miliaria.

Emberiza citrinella.

Sehr allgemein das ganze Jahr durch. Zwei Gelege. 4 Eier, selten 5, April bis Juli.

Emberiza hortulana.

Nicht allgemein. Wurde hier im Orte nicht brütend angetroffen.

Emberiza schoeniclus.

Brütet allgemein an den Seen.
Plectrophanes nivalis.
Kommt in allen schneereichen Wintern vor.

Passer domesticus.
Sehr zahlreich. 5—6 Eier den 15.—25. Mai.

Passer montanus.
Zahlreich; hat einen beliebten Aufenthaltsort in den Weidenstümpfen die auf der Ebene von Skåne so zahlreich vorkommen. 5—6 Eier den 15.—25. Mai.

Fringilla coelebs.
Zahlreich und scheint jährlich zuzunehmen. Richtet in den Wäldern grossen Schaden an, da er den ausgesäten Tannen- und Kiefersamen auffrisst sowie die Bucheicheln. Auch beisst er die jungen Pflanzen ab, sobald sie aufsprießen. (Den Samen mit Mennig zu färben, scheint etwas zu helfen.) In den Gärten schadet er auch und scheint besonders die Blumenknospen der Johannisbeersträucher mit Vorliebe zu fressen. Überwintert allgemein, hauptsächlich die Männchen. Die Weibchen kommen später als die Männchen. Im Sommer 1885 baute ein Paar sein Nest auf einem Balken in einem Gartenhause und brütete auch dort. (4)—5 Eier den 10.—25. Mai.

Fringilla montifringilla.
Sehr zahlreich beim Herbstdurchzug. In den Jahren, wo es Bucheicheln gibt überwintert er in unzähligen Massen.

Coccothraustes vulgaris.
Hat sich in den letzten Jahren sehr verbreitet und brütet an verschiedenen Stellen.

Linota chloris.
Allgemein brütend; scheint doch abzunehmen. (4)—5 Eier den 7.—15. Mai.
Linota cannabina.

Sehr allgemein, brütet zahlreich und am liebsten in jüngeren Tannenpflanzungen. (4)—5 Eier den 1. Mai—1. Juni.

Linota flavirostris.

Allgemein im Winter auf den Äckern.

Acanthis linaria.

Zahlreich jeden Winter und hält sich dann fast ausschließlich unter Erlen und Birken auf, deren Früchte seine hauptsächlichste Winternahrung auszumachen scheinen.

Acanthis spinus.

Zahlreich im Winter und Herbst, wo er mit der vorhergehenden Art zusammen grosse Scharen bildet. Brütet nicht.

Acanthis carduelis.

Pyrrhula europaea.

Allgemein im Herbst und Winter, tritt zuweilen in Massen auf (doch nicht in den letzten Jahren), und richtet dann grosse Verwüstungen in den Kirscbäumen an, deren Knospen er abbeiisst.

Loxia pityopsittacus.

Loxia curvirostra.

Dasselbe Verhältniss wie bei vorhergehender Art, wurde jedoch nicht so spät im Frühjahr beobachtet.
Sturnus vulgaris.

Garrulus glandarius.

Allgemein in den letzten Jahren, auch als Brutvogel. Zum Brüteplatz wählt er die zahlreich vorkommenden Tannenpflanzungen und am liebsten die, welche ein Alter von 20–40 Jahren haben.

Pica rustica.

Zahlreich. 5–8 Eier den 4.–10. Mai.

Nucifraga caryocatactes.

Bei »Hagestad mälar«, dem südlichsten Wald, oder Gebüsch in Skåne trat sie in Masse auf.

Corvus monedula.

Corvus cornix.

Sehr allgemein nimmt aber jährlich ab an Zahl, besonders, wo der Uhu bei der Jagd angewandt wird; doch verursachen die vorhandenen bedeutenden Schaden, und es wäre zu wünschen, dass die Dohlen die Nebelkrähen noch mehr verdrängen könnten, aber hiezu ist kräftige Hilfe von Seiten der Menschen erforderlich. 5 Eier Ende April.

Corvus corax.

Kommt sparsam im Sommer vor (brütet, aber selten ungestört), zahlreicher im Herbst und Winter, wo er gern auf Aas niederstösst (alte Pferde u. s. w.), wird dann zuweilen geschossen, aber oft geschont, um Adler anzulocken, die mit größerer Zuversicht auf das Aas niederstossen, wenn der Kohlrabe ihnen den Weg gezeigt. (Auf den Schaden, den er anrichtet braucht man nicht aufmerksam zu machen.) 4—6 Eier den letzten März.

Corvus frugilegus.

Tritt in Massen auf der sogenannten Skânischen Ebene auf und überwintert oft. Saatkrähenkolonien werden, wenn sie nicht allzu sehr verfolgt werden, dort fast überall angetroffen, wo einige Bäume stehen. Auf vielen Stellen werden sie geschützt (oder mit andern Worten gern gesehen), wegen des Gewinnes, den der Verkauf von jungen Saatkrähen einbringt (geschweige des Jagdvergnügens?). Massen von jungen Saatkrähen werden jährlich in den Städten zum Markt gebracht und finden willige Käufer. Über ihren grössern Nutzen oder Schaden will der Beobachter sich nicht äussern, doch geht eine grosse Menge Saat zu ihrem Unterhalt verloren, und eine Verminderung der zahlreichen Saatkranzhwärme würde keinen Verlust für die Scheunen des Landmannes verursachen. Beim Bau ihres Nestes sammeln sie gewöhnlich nicht, wie ihre verwandten Arten, abgefallene Reiser, sondern brechen solche von den Bäumen, wodurch kein kleiner Schaden verursacht wird; dies ist ganz besonders in der Stadt Malmö der Fall gewesen. 4—5 Eier erst im April.
Ampelis garrulus.
Tritt zuweilen auf im Spätherbst, hier in den letzten Jahren nicht beobachtet worden.

Alauda alpestris.
Nur einigemal im Spätherbst beobachtet worden. Allgemein an der Küste.
(Im Februar 1888 auf den Strassen von Lund.)

Alauda arvensis.

Alauda cristata.
Allgemein das ganze Jahr durch bei allen Städten, Dörfern und Eisenbahnstationen, kommt aber nicht in Waldgegenden vor; scheint jährlich sich mehr zu verbreiten. Ihre Hauptnahrung im Winter besteht aus Unrath von Menschen und Tieren. 4—5 Eier Ende Mai.

Alauda arborea.
Zahlreich beim Herbstdurchzuge.

Upupa epops.
Selten im Herbst; kommt fast jährlich bei Börringe vor.

Picus major.
Allgemein das ganze Jahr durch. 5—7 Eier Mitte Mai.

Picus medius.
Allgemein das ganze Jahr durch. 4—6 Eier den 19.—25. Mai.

Picus minor.
Selten. Einmal im Jahr 1884 brütend angetroffen.
Picus viridis.

Allgemein. 5—6 Eier anfangs Mai.

Anmerkung: Alle Spechte haben etwas abgenommen an Zahl, denn die beschädigten Bäume fangen an seltener zu werden in den gut gepflegten Wäldern.

Jynx torquilla.

Allgemein beim Durchzuge; nicht brütend angetroffen.

Cuculus canorus.

Allgemein; nahm ab an Zahl 1886, bedeutend weniger 1887. Zum erstenmal gesehen am 3. Mai.

Alcedo ispida.

Sehr selten.

Coracias garrula.

Cypselus apus.

Allgemein in allen Städten; brütet zuweilen in den Wäldern.

Caprimulgus europaeus.

Allgemein im Herbst; nicht brütend angetroffen.

Hybris flammea.

Recht allgemein in den meisten Kirchen auf der Ebene von Skåne und scheint sich zu verbreiten.

Strix tengmalmi.

Kommt oft im Herbst vor, doch nicht jedes Jahr.

Strix aluco.

Allgemein brütend. 4—6 Eier den 10.—19. April.
Otus brachyotus.

Allgemein im Herbst; recht allgemein auf den Heiden in Skåne.

Otus albicollis.

Bubo ignavus.

Kommt jeden Winter vor, aber sparsam.

Athene passerina.

Sehr selten im Spätherbst und Winter. 2 Exemplare wurden hier im November 1886 erlegt.

Athene scandiaca.

Circus pygargus.

Ziemlich allgemein im Herbst, wo die jungen Vögel oft mittels Bergeulen erlegt werden; die älteren sind sehr scheu. Weniger allgemein im Frühling.

Circus aeruginosus.

Kommt bei allen Seen vor, wo er auch brütet, war sehr zahlreich hier 1870—1871. Wird allgemein verfolgt, wegen des Schadens, den er anrichtet; weshalb er auch in den letzten Jahren abgenommen an Zahl. 3—6 Eier anfangs Juni.

Falco peregrinus.

Allgemein im Herbst (im September), wo er dem Lockton der Tauben folgt.
Falco subbuteo.

Falco aesalon.

Allgemein im Herbst.

Falco tinnunculus.

Astur palumbarius.

Astur nisus.

Brütet allgemein; ein Teil überwintert. 4—5 Eier Ende Mai.

Pernis apivorus.

Brütet sparsam; sehr zahlreich Ende August und Anfang September; etwas weniger zahlreich 1886—1887, streicht gewöhnlich von Osten nach Westen; was vom Winde abhängt; zieht gegen den Wind. Bei östlichem Wind hat man zuweilen ein Streichen von Westen nach Osten bemerkt, aber nur für kleine Strecken. 2 Eier im Juni.

Milvus ictinus.

Buteo vulgaris.

Allgemein brütend. Grosse Massen streichen im September über Skåne, gleichwie der Wespenbussard, doch sind diese

Buteo lagopus.

Allgemein im Spätherbst; mehrere überwintern.

Aquila chrysaetus.

Aquila naevia.

Selten im Herbst. (Fünf Exemplare wurden hier in der Gegend erlegt.)

Aquila albicilla.

Pandion haliaetus.

Nicht selten im Herbst und Frühling; brütet nicht in der Gegend.
Columba palumbus.

Columba oenas.

Allgemein brütend; zieht früher ab und kommt etwas später als die vorhergehende Art. 2 Eier, anfangs Mai 1 Ge- lege, Juni 2 Gelege.

Tetrao tetrix.

Vor ungefähr 10 Jahren kam es bei Romeliklint und der Umgegend vor und brütete es noch dort; jetzt sieht man es nur ausnahmsweise.

Perdix cinerea.

Sehr zahlreich. 12—23 Eier Ende Juni.

Coturnix communis.

Brütet zuweilen hier in der Gegend z. B. bei Lund, Top- peladugård u. s. w. Wird selten im Herbst bei der Feldhüh- nerjagd angetroffen, und dann fast immer in Runkebrüben- feldern.

Charadrius hiaticula.

Allgemein an der Küste; eine kleine Anzahl brütet bei den Seen. 3—4 Eier, anfangs Juni.

Charadrius minor.

Einige kommen bei den Seen vor und brüten auch dort; hat in den letzten Jahren abgenommen an Zahl. 3—4 Eier anfangs Juni.

Charadrius morinellus.

Selten an der Küste, allgemein in der Gegend von Ystad.
Charadrius pluvialis.
Gewöhnlich im Spätsommer und Herbst an der Küste, selten im Lande. Nimmt bedeutend ab an Zahl.

Vanellus vulgaris.

Haematopus ostrealogus.
Ein Exemplar im Sommer 1876 hier am See erlegt.

Scolopax rusticula.

Gallinago major.
Allgemein beim Durchzuge; zahlreich bei Klågerup und Börringe. Ein Paar brütete 1887 bei Klågerup.

Gallinago media.

Gallinago gallinula.
Ziemlich zahlreich im Spätherbst. Bei Quellen bleiben sie sehr lange, und hat der Beobachter noch im Dezember Exemplare angetroffen.

Tringa alpina.
Brütet hin und wieder, aber nirgendwo zahlreich. 4 Eier Ende Mai.

Philomachus pugnax.
Gewöhnlich im Herbst; nicht brütend angetroffen.
SUNDSTRÖM, ORNITHOLOGISCHE MITTEILUNGEN.

Numenius arquata.
Brütet nicht mehr hier in der Gegend; zuletzt im Jahre 1878 auf einem Acker bei Börriinge beobachtet. Allgemein beim Herbstdurchzug.

Limosa aegocephala.
Sehr selten im Herbst.

Actitis hypoleucus.
Brütet sparsam; zahlreich beim Herbstdurchzug.

Totanus ochropus.
Zahlreich im Sommer und Herbst; brütet nicht. Anfangs Juli kamen die ersten.

Totanus calidris.
Brütet selten im Innern des Landes.

Totanus glareola.
Allgemein im Herbst; brütet nicht hier in der Gegend.

Totanus glottis.
Allgemein im Herbst.

Grus communis.

Ciconia alba.
Nimmt jährlich ab, kann wohl bald als selten angesehen werden. Beim Herbstdurchzuge sammeln sich die Störche im September in grosser Anzahl zu sogenannten Storchversammlungen, um in der Nacht gemeinsam ihre Reise nach Süden vorzunehmen. Eine ähnliche Sammlung wurde im August dieses Jahres am Skabersee beobachtet und belief sich auf un-

Ciconia nigra.

Selten; bei Heckeberga hat ein Paar in diesem Jahr gebrütet.

Ardea cinerea.

Ardea stellaris.

Sehr selten. Ein Exemplar wurde in der Nähe von Lund im Herbst 1885 geschossen.

Rallus aquaticus.

Wird sparsam beim Herbst und Frühlingsdurchzug ange troffen. Ein Exemplar wurde auf dem Eis hier im See ange troffen den 3. Februar 1884.

Ortygometra crex.

Phalaridium porzana.

Gallinula chloropus.

Sparsam im Herbst.
Fulica atra.

Brütet an verschiedenen Stellen, aber nicht zahlreich, z. B. im Börringer See; früher zahlreicher. 7—10 Eier den 12.—25. Mai.

Anser bernicla.

Anser segetum.

Anser ferus.

Selten im Frühling; von dem Korrespondenten im Herbst nicht beobachtet.

Anmerkung: Eine kleinere Gans wurde verschiedene Male mit Anser arvensis beobachtet. Da kein Exemplar erlegt wurde, kann die Art nicht genau bestimmt werden (vielleicht Anser albifrons).

Tadorna vulpanser.

In den Jahren 1884, 1885 und 1886 brütete ein Paar hier auf einem mit Wachholder bewachsenen Weideplatz ungefähr einen Kilometer von dem Yddinger See. Jedes Jahr wurden Junge ausgebrütet, die an den See gebracht wurden, wo sie sich ungefähr 8 Tage aufhielten, wonach sie verschwanden (sie begaben sich nach dem 20 Kilometer weit entfernten Meere)

Cygnus olor.

Brütet in allen Seen, aber selten mehr als ein Paar in jedem; hat in den letzten Jahren zugenommen.
Cygnus musicus.
Besucht zuweilen im Herbst und Winter die Seen.

Anas clypeata.
Selten im Herbst.

Anas boschas.
Ziemlich zahlreich; zieht erst weg, wenn alle Gewässer mit Eis bedeckt sind; hat in den letzten Jahren etwas abgenommen. 10—12 Eier, Ende April und Anfang Mai.

Anas acuta.
Selten im Herbst.

Anas querquedula.
Kommt im Frühling und Herbst sparsam vor.

Anas crecca.
Brütet sparsam; zahlreich im Herbst und Frühling.

Anas penelope.
Allgemein im Herbst.

Oedemia nigra.
Nicht ungewöhnlich im Herbst.

Clangula glaucion.
Allgemein im Herbst und Winter.

Clangula glacialis.
Selten im Innern des Landes. Ein Paar hielt sich 1873 eine längere Zeit hier im See auf, und das Männchen wurde Ende Mai erlegt, das Weibchen (?) dagegen angeschossen und entkam.
Somateria mollissima.

Allgemein an der Küste. Exemplare, die sich hierher verirrt hatten (nur Weibchen), sind mehrere Male im Herbst angetroffen und unbeschädigt mit den Händen gefangen worden.

Mergus albellus.

Mergus merganser.

Allgemein im Herbst und Frühling; brütet nicht hier in der Gegend.

Mergus serrator.

Dito, dito.

Graculus carbo.

Kommt vor und brütet in einer Reiherkolonie bei Krageholm, eine Meile von Ystad.

Sterna minuta.

Einige Male hier im See beobachtet.

Sterna nigra.

Hier nicht beobachtet worden seit der sechziger Jahre; kam da bei Börringe vor (Myresjö).

Sterna hirundo.

»Hättenterna« genannt. Kommt vor und brütet an allen Seen, aber nicht zahlreich. 3 Eier, selten 4, Ende Mai.

Larus ridibundus.

Kleinere Kolonien bei dem Tjellfota- und Björkåkra-See nicht mehr als 20 Paare. 2—3 Eier Ende Mai.
Larus canus.
Besucht die Seen, gewöhnlich bei stürmischem Wetter, im Herbst; brütet nicht.

Larus argentatus.
Dito, dito.

Larus fuscus.
Dito, dito.

Procellaria leucorrhoa.

Colymbus rubricollis.
Selten. Ein Paar brütete hier 1887 in einem grösseren Torfmoore. 3 Eier den 20. Mai 1887, etwas bebrütet.

Colymbus cristatus.
Drei bis 4 Paare brüten jährlich im Börringe-See, nicht in einem der naheliegenden Seen beobacht worden. 3—5 Eier Anfang Mai.

Eudytes septentrionalis.
Kommt im Frühjahr und Herbst vor.

Eudytes arcticus.
Dito, dito.

Alca torda.
Einmal im Winter 1873 hier auf einem Acker erlegt worden.
Bökebergsslätt & Holmeja den 7. Mai 1888.

Tage Thott.
BIDRAG TILL KÄNNEDOMEN

OM

DE SKANDINAVISKA FOGLARNES OSTEOLIGI

AF

EMIL HOLMGREN

MED 9 TAFLOR

MEDDELADT DEN 9 SEPTEMBER 1891 GENOM F. A. SMITT

STOCKHOLM, 1891
KONGL. BOKTRYCKERIET. P. A. NORSTEDT & SÖNER
förvisso erbjuder fogelverlden med afseende på den anatomi-
iska byggnaden — genom de talrika modifikationer, som
derutinnan göra sig gällande, — ofantligt mycket af intresse,
och hvad specielt den osteologiska delen deraf beträffar, torde
det vara huvudsakligast kraniet samt skuldergördeln med der-
till hörande brösten, som förete den ojemförligt rikaste mång-
fald af former och förändringar. Också hafva dessa omständig-
heter foranledt redan för ganska lång tid tillbaka åtskilliga
naturforskare att begagna de differenser och homologier, som
iakttagits i ett eller annat afseende, till systematisering af
foglarnes klass. Så är ju t. ex. allmänt kändt bland ornitolo-
giens vänner och bearbetare, — utom andra försök till på-
visande av fogelarternas affinitet med hänsyn till skelettbygg-
naden, såsom af Eyton, Blanchard och Milne-Edwards jun.
— det system Huxley uppståt på grundvalen af de under-
sökningar han gjort å vomer, palatinerna och andra ossösa
bildningar tillhörande fogelkraniets basilara delar. Utan att
e mellertid egentligen inlåta oss på systematiska spörjsmål,
hafva vi egnat vår uppmärksamhet åt bröstenet och skulder-
gördeln hos skandinaviska foglar och vid studiet deraf följt
den uppställning, som nog med rätta till huvudsaklig del
ännu allmänt begagnas, nemligen Sundevalls system.

Att vi ingalunda haft i tanke att sätta oss det ideala
målet före att söka åstadkomma ett systematiserande af fogel-
klassen efter de iakttagelser vi gjort, är ju helt naturligt,
då dels våra studier gällt representanterna för endast ett fauni-
stiskt område, om ock detta skulle vara så rikt på arter af
skilda ordningar, som förhållandet är med det skandinaviska,
dels också då vi måst inskränka oss till studier öfver endast
vissa ossösa delar, — dessa må nu för öfrigt genom sina mer
eller mindre konstanta strukturförhållanden vara af hvilket
värde som helst vid systematiska spörjsmål. — Icke desto
mindre hafva vi vågat framkasta en eller annan mening med afseende på foglarnes gruppering, då de iakttagna strukturförhållandena varit af sådan beskaffenhet att de gjort hvarje tvifvelsmål öfverflödigt om de respektive foglarnes mer eller mindre lämpliga plats i det system vi följt; — synnerligast då vi varit i tillsfälle att kombinera resultaten af våra studier med dem, som dragits af en del forskare med anledning af rön, som blifvit gjorda i andra hänseenden hos de respektive foglarna.

Vi äro ingalunda okunniga om det i mer än ett hänseende så vidlyftiga, omfångsrika och betydelsefulla anatomiska arbete, Max Führbringer lemnat offentligheten; ej heller om de systematiska konsequenser han deri dragit af sina storartade undersökningar. Det skulle derför synas oss allt för förmåt att komma fram med några som helst anspråk, hvarken i det ena eller andra hänseendet, då det material vi lyckats förskaffa oss, inskränkt våra forskningar till endast en del af de skandinaviska foglarnes osteologi. — Så mycket af övertygelse ha våra studier dock skänkt oss, att vi gent emot flera författare våga påstå, det de skelettdelet, som varit föremål för vår behandling, genom sina strukturförhållanden är ofta synnerligen väl värdt att beaktas, då det gäller att fixera större grupper af fogelklassen, — lika så visst som de understundom kunna med fördel begagnas även vid spörjsmålet, beträffande mindre gruppars ömsesidiga ställning; och att härvid ofta nog äfven proportionerna skelettdeleternas emellan kunna vara af lika så stor betydelse som vissa strukturdetaljer.

Det önskemål, som dock närmast ledde oss, då vi först började grundligare studera de skelettdelet, som i detta arbete behandlas, var att, om ock i ringa mån, kunna bidraga till fyllandet af det tomrum, som ännu är ouppfyldt inom den skandinaviska ornitologiska litteraturen, och detta är den nära nog fullkomliga bristen på närmare anatomiska uppgifter i våra fogelhandböcker.

För öfrigt torde väl städse hvarje ingående specialstudium ega sitt större eller mindre värde, då det ju bidrager till den vidgade kännedomen om de respektive naturföremålen allmänna bildning och beskaffenhet.

Vi nämde, hurusom äfven proportionerna skelettdeleternas emellan kunna vara af intresse och värde. Vi ha också derför vid hvarje undersökt slägte jemte strukturförhållandena äfven
framhållit med exakta siffror medelvärdet af vissa funna proportioner; och haft vi dervid tagit till utgångspunkter för våra uppmätningar de anatomiska bildningar, som dertil synts oss mest fördelaktiga. — Man skulle härvidlag visserligen kunna invända, att våra mätningar gällt endast de exemplar vi haft framför oss och sålunda icke borde vara af beskaffenhet att allmänt tillämpas; men vi kunna beträffande denna omständighet säga, att vi genom flitiga undersökningar funnit, det proportionerna mellan olika skelett delars storlek hos skilda individer och kön af samma art dock nästan alltid visat sig vara i det närmaste konstanta.

De synpunkter och mätningssmetoder vi härvid begagnat, nemligen det ömsesidiga förhållandet i längd sternum och os coracoidenum emellan, maximihöjden af crista sterni gent emot halva sternallängden, djupet af incisura sternalis (der sådan eller sådana förefunnits) vis-à-vis sternallängden och sterni bredd, jämförd med samma längdmått, — gifva ett uttryck bland annat åven åt den större eller mindre styrkan och uthålligheten i de främre extremiteternas verksamhet, vare sig det gäller flygförmögen eller annat sätt för ställförflyttning, och sålunda på sätt och vis blifva i någon mån naturliga.

Att den successiva hufvudindelning i Oscines, Volucres, Accipitres, Rasores, Proceres, Grallatores och Natatores af fogelklassen, som vi finna i Sundevalls system, är åven phylogenetiskt tillfredsstillande, tyckas ifrågavarande osteologiska förhållanden i det hela bekräfta, om också det någon gång är svårt dels att finna karakterer, som skulle kunna sägas vara på samma gång bestämmande och genomgående för den ena eller andra af dessa huvudgrupper, dels också att spåra förmedlande former mellan dessa senare. Endast sällan möta oss emellertid slägten, åtminstone bland de skandinaviska representanterna, om hvilkas plats mer eller mindre direkt inom någonorderna af nämnda ordningar man behöfver.
EMIL HOLMGREN, DE SKANDINAVISKA FOGLARNES OSTELOGI.

stå tvekande, då hänsyn tages t. o. m. endast till de skelett- delar, som utgjort föremål för våra undersökningar. — Minst måhända af alla bilda Grallatores och Natatores naturligt skilda afdelningar, i det att vi finna talrika former hos båda dessa ordningar, som i flerfaldiga hänseenden öfverensstämma med hvarandra; på samma gång simfögllarna tyckas oss naturligt fördelade på tvenne huvudgrupper, hvilka båda kunna härledas ur Grallatores, under det att de sins emellan egna knappast ett enda gemensamt strukturförhållande. Dock torde väl utom andra giltiga skäl för en fördelning i Grallatores och Natatores, även de differenser och skiljaktigheter i den allmänna anläggningen af bröstben och skuldergördel, som obestridligen förefinnas mellan dessa båda ordningars represen- tanter, vara tillräckligt tydliga och talrika för att låta ifrågavarande foglar tillhöra skilda huvudgrupper af fogen- klassen.

Stanna vi deremot inför hvar och en ordning särskilt och granska densamma med hänsyn till inre strukturförhållan- den, så vi ofta nog anledning till invändningar gent emot den ömsesidiga ställningen familjer eller släkten emellan, lika- såväl som vi ej sakna former, hvilka utan tvifvel egentligen tillhöra andra ordningar, än dem, dit de — åtminstone i Sundevalls system — blifvit räknade.

Ehuruval flertalet af de terminologiska uttryck, hvaraf vi betjena oss, äro allmänt bekanta, hafta vi dock velat inleda vår afhandling med en kortfattad allmän beskrifning öfver de skelettdelar, som utgjort föremål för vårt arbete.

Det material vi begagnat hafta vi delvis lyckats sjelfva förskaffa oss, delvis, och i hufvudsaklig mån, ha Riksmusei samlingar stått till vårt förfogande; och är det mig en oafvislig pligt att hembära Intendenten för vertebratafdelningen herr Prof. F. A. SMITT ett ödmjukt och hjertligt tack för den välvilja och det tillmötesgående som från hans sida i så riklig mån kommit mig till del.
Redan ur mastologien känna vi, hurusom bröstben och skuldergördel kunna undergå rätt betydliga förändringar i samband med de differentieringar af muskulaturen, som ett säreget lefnadssätt uppväcker. Så finna vi hos chiroptererna, hvilka på sina egendomligt bildade vingar kunna förfölja och uppfånga de i luften kringfladdrande insekterna, ett bröstben som eger, åtminstone å manubrium sterni, en tydlig, utefter sterni mitt löpande crista, för att såmedelst ursprungsytan för de vid flygten verksamma pectoralmusklerna må blifva stor, utan att derigenom kroppens allmänna omfång behöfver synnerligen ökas. Dessutom veta vi, hurusom hos dessa djur claviceln uppnått en ovanlig längd för att derigenom kunna motverka det skadliga tryck, flygapparaten i annat fall skulle utöfva på bröstkorgen med deri inneslutna viscera.

Hos flertalet fåglar åter, hvilka till hufvudsaklig vistelseort fått sig anvisade luftens vida rymder, finna vi de af deras luftlif betingade anatomiiska förändringarna ännu mer utpraglade. Bröstbenet har nemligen erhållit en jemförelsevis mycket stor bredd och en hög crista, och genom den för foglarna karakteristiskt sjelfständiga och kraftiga utvecklingen af os coracoideum har — oftast i samband med de till ett ben förena claviculæ — vunnits ett särdeles mäktigt hämmande element mot det tryck, som bland annat pectoralmuskulaturen under flygten skulle utöfva på thorax. — I samband med denna säregna omgestaltning af skulderapparaten och bröstbenet har också vunnits ett annat moment, hvilket åfvenledes är af utomordentlig betydelse vid foglarnas flygt, och detta är den ventrala förskjutning af thorax’ anatomiiska delar, hvarigenom under luftlifvet ett mera stabilt jemvigtsläge uppnåtts.

Åtminstone approximatiift torde man kunna säga, att med den kraftigare utvecklingen af muskulaturen följer åfven en progressiv ossifikation. Så blir det oss i någon mån möjligt
att genom iakttagelser å den mer eller mindre kraftigt utvecklade skuldergördeln med åtföljande bröstben tillnärmelsevis sluta oss till den respektive fogens större eller mindre flygskicklighet. Så finna vi hos, såsom man säger, starka flygare breda och kraftigt byggda ossa coracoidea, breda skulderblad och oftast starkt böjda nyckelben. Sternum är helt eller endast föga genombrutet af incisurer eller fenestrer och crista sterni hög. Åfven hos sådana foglar, som blifvit mer eller mindre hänvisade till vistelse på sjöar och haf, finna vi skulderapparaten och bröstbenet särskilt lämpade för detta lif, hvorvid vi kunna erinra bland mycket annat om den jemförelsevis låga och långt framspringande cristan samt om den ovanliga längden af sterni distala del, hvarigenom såväl thoracal- som abdominalviscera skyddas mot vattentryckets inverkan.

Af dessa båda extrema exempel på den olika byggnaden af skuldergördel och bröstben hos en fagl, som till större delen dväljes i luftens ryvmor, och hos en sådan som till vistelseort fått sig anvisade haf och sjö, gifves helt naturligt den rikaste mångfald af modifikationer, lika så visst som icke alla luftfoglar, om vi så få kalla dem, eller alla sjöfoglar förete enahanda lefnadsförhållanden; — fastmera skulle vi vara benägne att säga, det nära nog hvarje särskild art har sitt i viss mån specifika sätt att förhåll sig. Men på samma gång vi påpeka detta, kunna vi icke heller urakltåta att erinra om den icke så sällan rådande öfverensstämmelsen i lifsytttringer foglar — tillhörande skilda grupper — emellan, och äro vi också i sådana fall icke utan tillfälle, att uti den anatomiska byggnaden skönja ett deraf resulterande uttryck.

Med anledning af detta sist sagda skulle man mäthanda kunna invända, att det vore allt för vanskligt att i så fall begagna sig af den speciella anatomiska byggnaden vid systematiska spörjsmål; men vi kunna dervid tillägga, att ärminstone i de allra flesta fall skymtar den respektive grundtypen fram, om också förändringar, framkallade af ett afvikande lefnadssätt, äro egna att vid ett flyktigt betraktande vilseda. Dessutom gifva iakttagelser otvetydigt vid handen, att af sklettet framförallt bröstben och skuldergördel bibehålla i mer eller mindre hög grad sina ursprungliga karakterer, då deremot t. ex. kraniet i ej oväsentlig mån kan förändras och apteras efter de yttre lefnadsförhållandena. — De i flerfaldiga hänseenden talrika modifikationer foglarnes exteriör kan undergå
under inflytande af allehanda yttre förhållanden, ligga alldeles utom området för vårt föreliggande arbete.

Hvad beträffar den primära skuldergördeln, d. v. s. scapula och os coracoides, så utvecklar sig denna hos carinatae ur en enda broskplatta, hvilken är vinkligt böjd och genom sin ventrala, bakåt med sternum förbundna skänkel bildar anlaget till os coracoides, under det att samma plattas dorsala del, som löper mer eller mindre parallellt med ryggraden och distalt slutar fullkomligt fritt, utgör ursprunget till scapula. Under ossifikationsprocessen differentiera sig dessa båda broskskänkel allt mer ifrån varandra, i det att hvar och en af dem utvecklar ett eget förbeningssentrum. Städse förblifva de och skilda genom en vid deras gemensamma beröringsyta persiste-rande återstod af det ursprungliga broskanlaget. Denna synchondros öfvergår dock i män af den fortskridande utvecklingen så småningom till en mer eller mindre utpreglad symphys, i det att förbindelsen mellan coracoid och scapula, som hos de späda individerna bestod af endast hyalint brosk, allt mer upptager i sig fibrösa element.

Hvad slutligen utvecklingen af sternum beträffar, synes detta, för så vidt man nemligen ej går längre tillbaka än till sterni broskstadium, uppkomma hos flertalet foglar ur tvenne jemte hvarandra löpande sidobroskskifvor, hvilka så småningom sammanflyta till en oparig sternalplatta. Hos hönsfoglarna deremot skall bröstbenet enligt Gegenbauer utveckla sig ur tvenne pariga sido-broskstykken och ett mellersta oparigt, hvilket senare i så fall utgör anlaget till crista sterni.

Enligt Götte's iakttagelser består bröstbenet hos carinaterna genetiskt af en episternal del (cristan) och en costal

— Att histologiska undersökningar verkligen bekräfta dessa iakttagelser i de flesta hänseenden, derom lider intet tvifvel, likaså visst som vi ännu under det fullt utvecklade tillståndet understundom kunna i cristans struktur ana dess pariga ursprung; så hos de foglar, der den ovanligt långa trachea sökt sig utrymme i bröstbenskammen. Men huruvida tolkningen af de fakta, som mikroskopet härvidlag bragt i dagen, till alla delar verkligen äro fullt riktiga, haflte vi svårt för att fatta. Vi ha nemligen sjelfva varit i tillfälle att flera gånger vid histologiska undersökningar finna den vid furculans sternala ände förefintliga, med denna senare oftast synostoserade, processen ossifieras, i likhet med clavicula, direkt, utan preformerad broskanlag och dervid faktiskt framgående ur den ursprungligen pariga membrana sterno-clavicularis. Vi ha derjemte med Götte funnit crista sterni bildas samtidigt med det öfriga bröstbenet ur preformerad broskanlag (se Tafl. I, figg. 1 och 2!). — Vi ha svårt för, mena vi, att såsom enhetlig bildning — här såsom episternum — uppfatta ett organ, hvilket såsom ossierad skulle delvis framgått direkt ur bindesubstans, delvis ur ett preformerad broskanlag. Att lamina mediana (membrana sterno-clavicularis) ursprungligen är parig på samma gång vi finna cristans anläggning äfvenledes vara det, behöfver naturligtvis ej verka störande på den uppfattning vi ega. — Man har äfven hos vissa högre däggdjur velat sköna spår af en episternal bildning, så uti ligamentum interclavicular och den menisk, som förmedlar kongruensen i articulatio sterno-clavicularis. Vi ha icke sett uppgifvet, att den crista, vi iakttaga hos chiroptererna och hvilken hos dessa, liksom hos foglarne, resulerat af en särskildt differentierad pectoralmuskulatur, skulle kunna hänföras till samma bildning som ligamentum inter-clavicular och fibro-cartilago sterno-clavicularis.

Om episternum se nedan!
Scapula (Tafl. 1, figg. 5, 10, 12 och 13).

Skulderbladet intager den dorsala delen af skuldran och hvilar, löpande parallellt med ryggraden, på bröstkorgens dorsala yta. Den står i förbindelse med thorax genom os coracoideum, understundom äfven genom clavicula, och till en del har humerus vid detta ben sitt fäste.

Scapula (fig. 5, se.) är lång och smal, ofta af ett svärdlikt utseende, haftande sin längdsaxel riktad framifrån och bakåt. Den är, synnerligast mot den distala delen, i mer eller mindre män tillplattad uppifrån och nedåt och derjemte oftast spetsigt utdragen. Den proximala eller främre delen deremot är jemförelsevis mera rundad och eger vid sin ände tvenne väsentliga bildningar, nemligen en medial process, hvilken är riktad mer eller mindre framåt och inåt, processus acromialis, acromion (fig. 10, acr.), samt ett lateralt utskott, capitulum (fig. 10, cap.), hvilket på sin utåt och något framåt vända yta eger en för djupning, som utgör en del af den cavitas glenoidea (fig. 10, cav. glen.), uti hvilken caput humeri artikulerar. Genom sin facies coracoidea står scapula i en mer eller mindre utpreglad symphytisk förbindelse med os coracoideum. Å denna facies kan man ofta i den laterala delen urskilja en tuberculum inter-articulare (fig. 13, tub. int. art.), hvilken hvilar i en motsvarande fördjupning af os coracoideum (fig. 12, x). Skulderbladets uppåt vända yta, superficies externa, företer på grund af talrika muskelursprung och insertioner en ojelm yta, under det att den nedåt vända eller superficies interna är mera jem och slät. Dock påträffar man här ej så sällan strax öfvan symphysis coracoscapularis ett mer eller mindre stort foramen pneumatieum (fig. 13, for. pneum.).

Även på foglarnes skulderblad skulle man, i likhet med förhållandet hos flertalet däggdjurs scapula, kunna särskilja trene ränder eller margines. Af dessa utgör margo anterior, som medialt öfvergår i acromii undre rand, den bakre begränsningen för det vid den proximala änden af os coracoideum genom detta senare ben samt clavicula och scapula bildade stora foramen triosseum (fig. 10, for. trios.).

1 Vi referera våra bestämningsar till fogelns sittande ställning.
Os coracoideum (Tafl. I, figg. 5, 10, 11, 12, 14, 15, 16, 17).

Os coracoideum är, må man med skäl kunna säga, ett för foglarna säreget ben; ty, churuväl vi återfinna det hos dägg-djuren, uppträder det der nära nog aldrig hos de fullbildade individerna såsom en sjelfständig ossös bildning, utan såsom en process från scapula. Härifrån utgöra dock, såsom bekant, monotremata ett märkligt undantag, hvilka i detta såväl som i flera andra hänseenden bilda en öfvergång mellan dägg-djurens och foglarnes klass.

Vi hafta förut vid beskrifningen af scapula nämt, huru-som os coracoideum förmedlar skulderbladets fixerande vid thorax; coracoid artikulerar nemligen mot sternum. Utom dessa förbindelser, med sternum och scapula, eger benet ännu en, nemligen med clavicula; och humerus har till en del sitt fäste vid detsamma.

»Korpbenet« (fig. 5, cor.) är mer eller mindre långsträckt, med sin längdsaxel riktad nedifrån och bakifrån, uppåt och framåt. Vid sin sternala eller distala del är benet mer eller mindre tillplattadt uppifrån och nedåt samt på sin inre sida försedd med en mer eller mindre tydligt uttalad intryckning, impressio sterno-coracoidea (fig. 15, impr. st. cor.), hvilken, såsom hos hönsfoglarna, kan ega ett foramen pneumaticum. Denna impression begränsas framåt och lateralt af en olika skarpt markerad linea intermuscularis interna (fig. 15, lin. int. int.), hvilken bakåt och utåt öfvergår i den främre randen af processus lateralis ossis coracoidei (fig. 15, proc. lat.). Medialt förlorar sig impressio sterno coracoidea i den mera plana angulus medialis distalis (fig. 15, ang. dist.), hvilkens inre kant fortsätter sig framåt, bildande margo medialis ossis coracoidei, hvarifrån åter utspringer den hos olika fogelgrupper olika bildade processus procoracoideus (figg. 11, 12, 14, proc. proc.). Detta utskott hvälver sig inåt och mer eller mindre nedåt och framåt, hvarigenom å »korpbenets« externa, mediala yta uppkommer en fära, sulcus supracoracoideus (fig. 14, sulc. sup. cor.), hvilken omsider framåt mynner i foramen triosseum. Utefter hela eller endast en del af den främre randen af processus procoracoideus har coracoid sin symphytiska förbindelse med scapula. Omedelbart framför och lateralt om symphysis
coracoscapularis företer os coracoidenum en lateralt och något bakåt riktad, intryckt yta, som tillsammans med fossan å capitolium scapulae bildar den cavitas glenoidea (figg. 10, 12, cav. glen.), uti hvilken caput humeri artikulerar. Framför denna slutar os coracoidenum i ett mer eller mindre utdraget och vultigt utskott, spina coracoidea, aerocoracoideum (figg. 10, 12, 14, acrocor.), hvilket med sin till clavicula stötande yta understundom plägar böja sig mer eller mindre hakformigt nedåt och bakåt (se fig. 4!). Nära den främre änden af os coracoideum, uti canalis supracoracoideus, påträffas ofta ett (eller flera) foramen pneumaticum (fig. 12, for. pneum.), åfvenså understundom på facies interna omedelbart bakom symphysis coracoscapularis ett foramen supracoracoideum (figg. 11, 12, 14, for. sup. cor.). Å facies externa sträcker sig från den laterala delen af crista articularis sternalis (fig. 14, crist. art.), eller den bakre, mot sternum ledande randen, framåt en mer eller mindre skarpt markerad linea internuscularis externa (fig. 14, lin. int. ext.).

Coracoid's facies articularis sternalis är vanligen i sin mediala och externa del konvex, i sin interna mer eller mindre konkav (se fig. 16!), i den laterala delen nästan städse konvex (se fig. 17!). Dock måste vi beträffande denna artikulerande coracoidal yta påpeka, hurusom densamma är underkastad talrika förändringar med afseende på sin byggnad. Allt efter de skilda fogelarternas olika sätt och medium för sin rörelse och deraf resulterande olika exkursion af coracoid i sterno-coracoidal daleden, har den ifrågavarande ledytan fått ett för de skilda grupperna mer eller mindre specifikt utseende. — Lättast, tyckes det oss, bör den respektive sterno-coracoidalartikulationen kunna till sin form öfverses, om man lägger ett snitt dels i den mediala, dels i den laterala delen af ifrågavarande led, båda snitten gående i coracoids längdsriktning. — Detta förfarings sätt hafta vi begagnat, då vi i berörda hänseende iakttagit de olika fogelgrupperna.

Clavicula (Tabl. 1, figg. 4, 5, 10, 18).

Såsom förhållandet är hos däggdjuren, så visar sig nyckelbenet äfven hos foglarna utgöra den variablaste delen af skulderapparaten. Det är ett mer eller mindre långsträckt och
oftast framåt bågböjd ben, hvilket sträcker sig mot sternum från den främre änden af os coracoideum, med hvilket det städse står i förbindelse (figg. 4, 5, cl.). I de flesta fall samman-
hänger det dervid även med processus acromialis scapulae. Enligt regel har också den distala eller sternala änden af clavicula intimt sammansmält med motsvarande del af nyckel-
benet å andra sidan, — och betraktas då båda nyckelbenen såsom en enda bildning under namn af furcula. Exempel sak-
nas dock icke, der under det fullt utbildade stadiet ett direkt ossöst samband mellan de båda claviculæ icke eger rum.

Längdsriktningen af nyckelbenet är mycket varierande och svår att allmänt bestämma. Tillnärmelsevis kan man dock säga, att om man tänker sig en linie samman-
underteckna under den ena änden af claviculas coracoidala faste, den andra, utdragen eller icke, — beroende på clavicles relation till sternum, — kommer att falla å någon punkt af margo anterior cristae sterni, aldrig nedom densamma.

Liksom den proportionella längden af raden till den peri-
sferi claviceln beskrifver kan variera högst betydligt, så kan ock benets allmänna struktur hos olika flyggrupper vara väsentligt olika. I allmänhet är dock pars coracoidalis bredast under det att bredden aftager mot den sternala änden.

Det är ock ett annat förhållande man icke kan undgå att iaktta, då man granskar nyckelbenet utefter dess längd, och det är att benet ofta så småningom undergår en torsion, en vridning kring sin egen axel, så att man vid den coracoidala delen kan tala om en yttre och en inre yta, under det att man vid den sternala delen iakttagar en övre och en undre. — Bäst se vi detta förhållande uttaladt hos kraftiga och uthålliga flygare, t. ex. hos roffoglarna; och den fysiologiska betydelsen deraf torde ovetydigt vara att i ej oväsentlig män öka den fjedrande styrka, hvarmed furculan håller de båda coracoid-
benen afångståda från hvarandra.

Pars coracoidalis är, såsom vi antydt, oftast tillplattad utifrån och inåt; och allt efter den olika arten af förbindelsen mellan coracoid och clavicel är denna del olika danad. År förbindelsen en diarthros, omfattar oftast claviceln med sin ledande yta mer eller mindre fullständigt den mediali undre delen af acrocoracoidenum (se fig. 10!); är åter t. ex. en syn-
desmos eller en synchondros förhanden, plägar clavicula vara
fästad endast vid den mediala sidan af samma coracoidala del och företer då ej så sällan en processus acrocoracoidalis (fig. 18, proc. acrocor.), hvilken är riktad framåt och något uppåt.

Ett foramen pneumaticum påträffas understundom på den mot acrocoracoideum vettande ytan af pars coracoidalis.

Furculans pars sternalis är, såsom vi nämt, jemförelsevis smal och ofta tilltryckt uppifrån och nedåt samt eger, med ett mindre antal undautat, vid föreningsstället mellan båda nyckelbenen en olika gestaltad processus episternalis furculæ (episternum) (fig. 4, proc. ep.-st. furc.).

Sternum (Tafl. l. figg. 5, 6, 7, 8, 9, 16, 17).

Hvad beträffar sterni form, liknar den närmast en sköld, hvilkens konvexa yta vetter nedåt och framåt och bär den omnämnda cristan (fig. 5, st.); den konkava ytan är riktad uppåt och bakåt. I den främre delen och de laterala kanterna eger bröstbenet sin största kompakthet och fasthet, under det att den bakre och mediale delen är tunnare och företer fontanellartade foramina eller incisurer.

Crista sterni (fig. 5, cr.) är af proportionelt mycket vexlande höjd och även form, och i likhet med sjelfva bröstbenet har den sin största fasthet och styrka i den främre delen, der den också oftast eger sin högsta resning. Apex crista (fig. 5, ap.) behöfver dock icke alltid markera maximum i höjd; ofta ligger den ej så obetydligt under detta, i det att cristans margo longitudinalis, då den tager sin början vid apex, först stiger och sedan så småningom sänker sig ned mot sterni xiphoidala del, der den kan öfvergå i en mer eller mindre

Vid roten, om vi så få säga, till cristans främre del placeras oftast utspringa från sterni främre rand en hos olika fogelgrupper olika danad *spina sterni externa* (figg. 5, 8, sp. st. ext.), och från denna spets, respektive främre rand, löper åt hvar- dera sidan lateralt bakåt och nedåt en ås, *labium externum sulci coracoidei sterni* (fig. 8, lab. ext.) hvilken kommer att utgöra den ytters gränssättningen för den ledyta, mot hvilken os coracoideum artikulerar. — Hvad beträffar formen å *sulcus coracoideus sterni*, är den helt naturligt underkastad lika talrika förändringar som coracoidbenets facies articularis sternalis. I allmänhet torde man dock kunna säga, att den laterala delen är konkav (se fig. 17!), den mediala externa delen äfvenså konkav och den interna konvex (se fig. 16!). — Lateralt slutar labium externum vanligen med en olika skarpt framträdande vulstighet, *tuberculum labii externi* (figg. 5, 8, tub. lab. ext.). Den inre begränsningen av nämnda sulcus utgöres av *labium internum s. c. st.* (figg. 6, 7, 8, lab. int.), å hvilken vi åfven finna, mer eller mindre aflägsnad från medianlinien, *tuberculum labii interni* (fig. 7, tub. lab. int.). Från midten af den inre rand, som sålunda bildas af de båda labia interna, utgår under-stundom en *spina sterni interna* (fig. 6, sp. st. int.). De båda spineerna kan vara förenade med hvarandra förmedelst en benlamell, och bilda de i sådant fall ett mer eller mindre fullständigt *septum interarticulare sterni*.

Från tuberculum labii externi utgår dels i riktning bakåt och medialt en vanligen ganska tydligt framträdande *linea interpectoralis sterni* (figg. 5, 8, lin. intp. st.). dels i riktning bakåt och lateralt en oftast skarpt markerad *linea sterno-coracoidea* (figg. 5. 8, lin. st. cor.), lateralt om hvilken utbreder sig en fördjupning, *impressio sterno-coracoidea sterni* (figg. 5, 8, fos. st. cor.).

Bröstbensets margines laterales bära de processer, mot hvilka sterno-costalbenen artikulerar; och som dessa senare ega dubbla capitula, finna vi också *processus costales* (fig. 5, pr. cost.) anordnade två och två bredvid hvarandra — den ena lateralt
om den andra — och de olika grupperna skilda genom incisurē intercostales (fig. 5, inc. inc.). Från den främre delen af margo lateralis utgår vidare den olika utvecklade processus sterno-coracoideus seu procoestalīs (figg. 5, 6, 7, 8, st. cor.), å hvilkens yttre yta vi återfinna en del af impressio sterno-coracoidea. — Denna process kan någon gång bära processus costales ända ut till sin spets, i andra fall åter kan den fullständigt sakna sådana.

Den bakre, xiphoidala delen af sternum är, såsom redan blifvit antydt, tunnare och svagare än den främre. Understundom, såsom hos roffoglar, är den hel och icke perforead, men företer dock oftast af membraner utklädda fenestrae (fig. 5, fen.) eller, om dessa utbröts sig och dervid genombrutit den bakre sternalkanten, incisurē (fig. 9, inc.), hvarigenom i senare fallet — beroende på incisurernas djup — mer eller mindre långsträckta benstafvar, trabecula, processus abdominales (fig. 9, trab.), uppstå, hvilka kunna vara en eller två å hvar-dera sidan om crista sterni. Åro de två, talar man om trabecula laterale et mediale. Understundom fortsätts dessa bakåt af broskartade apophyser.

Å sterni facies interna iakttagar man ofta i den främsta delen af midtplanet ett eller två foramina pneumatica (fig. 6, for. pneum.), som sänka sig ned mer eller mindre djupt i den pelarelika förtjockningen af cristas främre del.

Vi nämde, då vi vidrörde den primära skuldergördeln, hurusom scapula och coracoid uppkommit ur en enda vinkligt böjd broskplatta. Den vinkel, som sedermera under det fullt utvecklade tillståndet de nämnda benens längdsaxlar bildar med hvarandra, angulus coraco-scapularis, är emellertid ingalunda lika för alla foglar, utan varierar rätt betydligt, dock så, att samma gradantal plägar vara gemensamt för en större eller mindre grupp, såsom vi här nedan närmare skola finna.

Såsom Harting visat, skulle hos alla foglar finnas en bildning, jemförlig med Sauriernas episternum, hvilken dock oftast till större delen, ja understom helt och hållet, förblir membranös (membrana sterno-coraco-clavicularis (se Tafl. 1, fig. 4!). En
ossifikation af denna episternalapparat iakttaga vi allmännast i dess bakre och mellersta blad eller den del af samma bandmassa, som är utsänd mellan furculans sternala ände och margo anterior af crista sterni — lamina mediana (lam. med.). — Detta förbeningscentrum utvärket ofta till en benplatta, hvilken i flertalet fall är förenad med furcula der, hvarest de båda claviculæ sammanstötta, eller någon gång med den främre randen af crista sterni, och hvilken hos skilda folgengrupper företer de mest vexlande former. På grund derutaf, att denna till sitt utseende så olikartade ossösa bildning såhanda ursprungligen snarare tillhör episternalapparaten än de båda claviculæ, med hvilka den dock oftast är förenad, ha vi, då den uppträdt såsom en process från furcula, gifvit den namn af processus episternalis furculæ (Cuvier's apophyse épisternale). — Af Cypselus apus ha vi varit i tillfälle att iakttaga några exemplar, der ifrågavarande del varit såsom ossös bildning fri vis-à-vis nyckelbenens båda sternala änder och dervid endast inskjuten emellan samt genom syndesmotisk förbindelse förenad med dessa, — ett förhållande, som låter oss t. o. m. under det fullt utvecklade tillståndet se i proc. episternalis furculæ en gent emot claviculæ indifferent bildning (se Tafl. I, fig. 3!).

Vi nämnde, att Harting sett en episternalapparat uti hela membrana sterno-coraco-claviculæ. Gegenbauer åter och med honom bland andra Götte hafva såsom episternal bildning uppfattat endast denna membranes lamina mediana; och bland de många skäl, som tyckas tala för riktigheten af denna senare uppfattning, torde måhända även den omständigheten kunna framhållas, att, så vidt vi hafva funnit, aldrig någon annan del af membranen undergår ossifikation än lamina mediana. Harting omtalar även ett annat förbeningscentrum, nemligen spina sterni externa, men histologiska undersökningar hafva gifvit oss vid henden, att denna process framgår i gemensamhet med sternum ur ett preformerad broskanlag, under det att processus episternalis furculæ framspringer direkt ur den bindestubans, som förefinnas mellan furcula och crista sternalis (se Tafl. I, figg. 1 och 2!).
ORDNING I.

Oscines (Tafl. II, figg. 1—3).

Ingen ordning inom fogelsystemet torde med afseende på skuldergördelns och bröstbenets byggnad vara mera likformig än denna. Nära nog alla de familjer, slägten och arter, som inom densamma inrymmas, förete så mycken inbördes överensstämmelse i nästan alla detaljer, att man endast i de varierrande proportionerna i längd eller bredd mellan de här behandlade skelettdelarna kan finna anmärkningsvärdana skilljaktigheter.

Scapula är svärdformig, i sin distala ende spetsigt utdragen och står i förbindelse med extremitas coracoidalis claviculae förmedelst sitt acromialutskott, hvilket är väl utvecklad och bildar en mot clavicula ledande, triangulär samt framåt och medialt riktad yta. Den å os coracoideum endast obetydligt utvecklade processus procoracoideus när blott i mindre grad acromion.

Os coracoideum bildar ett temligen smalt och utdraget ben, som är af ungefär sterni längd. Dess linea intermuscularis interna är ovanligt skarpt framträdande och processus procoracoideus, såsom ofvan blifvit framhållat, jemfoerelsevis mycket svagt utvecklad. Acrocoracoideum böjer sig med sin till clavicula stötande yta mer eller mindre hakformigt nedåt och bakåt.

Angulus coraco-scapularis utgör i flertalet fall omkring 70 grader.

Clavicula är smal, utefter större delen af sin längd någorlunda jembred, och furcula eger en processus episternalis, som oftast bildar en upptåt riktad, från sidorna tillplattad lamell, hvilken liksom delvis utfyller det rum, som bildas mellan margo anterior cristae sterni och den linea, som tänkes dragen från främre randen af spina sterni externa till apex cristae. Vid änden af extremitas coracoidalis utbreder sig clavicula hastigt triangulärt och står vid denna del i förbindelse med
acromion och acrocoracoideum. Medelpunkten till den periferi clavicula erbjuder ligger något bakom och ungefär i jemnhöjd med apex scapulae. Nyckelbenet beskrivs sålunda hos dessa foglar en ej så synnerligen skarp kurva.

Foramen triosseum är, företrädvis genom den för förbindelsen med clavicula triangulärt utbredda acromialprocessen hos scapula, förträngdt.

Sterno-coracoidalleden torde med afseende på sina ledytors byggnad närmast motsvara en ginglymus. I den mediala delen är emellertid crista articularis ossis coracoidei temligen djupt inkilad i motsvarande sulcus coracoidalis sterni; i den laterala delen af samma led är förbindelsen deremot — såsom förhållandet oftast är åfven inom öfriga ordningar — friare, i det att endast en ytterst obetydlig del af coracoid's facies externa står i kontakt med det här mycket låga labium externum sulci coracoidei sterni.

Endast en familj, nemligen *Upupinae*, afviker från de allmänna karaktärer för ordningen Oscines, som vi här ofvan angivit. De för nämnda familj specifika eller från öfriga familjer, tillhörande Ordning I, divergerande strukturförhållandena skola emellertid närmare påpekas längre fram.
Familjen Lusciniiæ.

Af de skandinaviska slägten, som hit höra, nemligen Luscinia L., Cyanecula Brehm, Erithacus Cuv. och Ruticilla Brehm, stå de tre sist nämda hvarandra närmast, i det att de förete ett sternum, som i längd understiger den respektive coracoidallängden:

<table>
<thead>
<tr>
<th></th>
<th>mm:s</th>
<th>sternallängd</th>
<th>coracoidallängd</th>
</tr>
</thead>
<tbody>
<tr>
<td>Erithacus</td>
<td>14</td>
<td>15</td>
<td></td>
</tr>
<tr>
<td>Ruticilla</td>
<td>13</td>
<td>14</td>
<td></td>
</tr>
<tr>
<td>Cyanecula</td>
<td>15</td>
<td>16</td>
<td></td>
</tr>
<tr>
<td>Luscinia</td>
<td>18</td>
<td>18</td>
<td></td>
</tr>
</tbody>
</table>

då deremot hos Luscinia, såsom ofvan synes, sternallängd och coracoidallängd sammanfalla.

Maximihöjden av crista sterni understiger hos alla med ungefär 1 mm. den respektive halfva sternallängden:

<table>
<thead>
<tr>
<th></th>
<th>cristans höjd</th>
<th>halfva sternallängden</th>
</tr>
</thead>
<tbody>
<tr>
<td>Erithacus</td>
<td>6</td>
<td>7</td>
</tr>
<tr>
<td>Ruticilla</td>
<td>5</td>
<td>6,5</td>
</tr>
<tr>
<td>Cyanecula</td>
<td>6</td>
<td>7,5</td>
</tr>
<tr>
<td>Luscinia</td>
<td>8</td>
<td>9,5</td>
</tr>
</tbody>
</table>

Den proportionella sternalbredden varierar mellan de olika slägtena:

<table>
<thead>
<tr>
<th></th>
<th>sternalbredd</th>
<th>sternallängd</th>
</tr>
</thead>
<tbody>
<tr>
<td>Erithacus</td>
<td>15</td>
<td>15</td>
</tr>
<tr>
<td>Ruticilla</td>
<td>13</td>
<td>13</td>
</tr>
<tr>
<td>Cyanecula</td>
<td>12</td>
<td>15</td>
</tr>
<tr>
<td>Luscinia</td>
<td>16</td>
<td>19</td>
</tr>
</tbody>
</table>

Incisurens djup utgör:

<table>
<thead>
<tr>
<th></th>
<th>incisura</th>
<th>sternallängd</th>
</tr>
</thead>
<tbody>
<tr>
<td>Erithacus</td>
<td>6</td>
<td>15</td>
</tr>
<tr>
<td>Ruticilla</td>
<td>5</td>
<td>13</td>
</tr>
<tr>
<td>Cyanecula</td>
<td>6</td>
<td>15</td>
</tr>
<tr>
<td>Luscinia</td>
<td>7</td>
<td>19</td>
</tr>
</tbody>
</table>

Familj. Saxicolinæ.

De slägten, som tillhör denna familj, nemligen Praticola Kaup. och Saxicola L., åro mycket homogena; de förete
båda ett sternum, som med 2 mm. understiger coracoidal-
längden:

<table>
<thead>
<tr>
<th></th>
<th>sternallängd</th>
<th>coracoidallängd</th>
</tr>
</thead>
<tbody>
<tr>
<td>Praticola</td>
<td>13</td>
<td>15</td>
</tr>
<tr>
<td>Saxicola</td>
<td>15</td>
<td>17</td>
</tr>
</tbody>
</table>

Maximihöjden af crista sterni är äfven hos båda slägtena proportionelt lika:

<table>
<thead>
<tr>
<th></th>
<th>cristans höjd</th>
<th>halfa sternalländ</th>
</tr>
</thead>
<tbody>
<tr>
<td>Praticola</td>
<td>6</td>
<td>6,5</td>
</tr>
<tr>
<td>Saxicola</td>
<td>7</td>
<td>7,5</td>
</tr>
</tbody>
</table>

Med afseende å sternalbredden förefinnes dock någon olikhet, i det att densamma hos Praticola med 1 mm. öfver-
stiger sternallängden, då den åter hos Saxicola är lika med denna senare:

<table>
<thead>
<tr>
<th></th>
<th>sternalbred</th>
<th>sternalländ</th>
</tr>
</thead>
<tbody>
<tr>
<td>Praticola</td>
<td>14</td>
<td>13</td>
</tr>
<tr>
<td>Saxicola</td>
<td>15</td>
<td>15</td>
</tr>
</tbody>
</table>

Proportionelt åro åfvenledes djupen af incisurae sternales lika:

<table>
<thead>
<tr>
<th></th>
<th>incisura</th>
<th>sternalländ</th>
</tr>
</thead>
<tbody>
<tr>
<td>Praticola</td>
<td>6</td>
<td>13</td>
</tr>
<tr>
<td>Saxicola</td>
<td>7</td>
<td>15</td>
</tr>
</tbody>
</table>

Familj. Turdinae.

Artorna till slägtet Turdus L. kunna ganska väl uppställas såsom typer för ordningen Oscines, i det att de förete de relativa proportioner, som vi i allmänhet återsinna inom flertalet af öfriga hithörande familjer. Så ega de alla ett sternum, som med en eller annan millimeter i längd öfverträffar os coracoideum:

<table>
<thead>
<tr>
<th></th>
<th>sternalländ</th>
<th>coracoidalländ</th>
</tr>
</thead>
<tbody>
<tr>
<td>T. musicus</td>
<td>25</td>
<td>24</td>
</tr>
<tr>
<td>» pilaris</td>
<td>29</td>
<td>27</td>
</tr>
<tr>
<td>» merula</td>
<td>29</td>
<td>26</td>
</tr>
<tr>
<td>» torquatus</td>
<td>32</td>
<td>28</td>
</tr>
</tbody>
</table>

Maximihöjden af crista sterni understiger med någon millimeter halfva sternallängden:

<table>
<thead>
<tr>
<th></th>
<th>cristans höjd</th>
<th>halfva sternallängden</th>
</tr>
</thead>
<tbody>
<tr>
<td>T. musicus</td>
<td>11</td>
<td>12,5</td>
</tr>
<tr>
<td>» pilaris</td>
<td>13</td>
<td>14,5</td>
</tr>
<tr>
<td>» merula</td>
<td>12</td>
<td>14,5</td>
</tr>
<tr>
<td>» torquatus</td>
<td>14</td>
<td>16</td>
</tr>
</tbody>
</table>
EMIL HOLMGREN, DE SKANDINAVISKA FOGLARNES OSTEOLOGI.

Vidare understiger städse sternalbredden den respektive sternallängden:

<table>
<thead>
<tr>
<th></th>
<th>sternalbredd</th>
<th>sternallängd</th>
</tr>
</thead>
<tbody>
<tr>
<td>T. musicus</td>
<td>22</td>
<td>25</td>
</tr>
<tr>
<td>» pilaris</td>
<td>24</td>
<td>29</td>
</tr>
<tr>
<td>» merula</td>
<td>25</td>
<td>29</td>
</tr>
<tr>
<td>» torquatus</td>
<td>27</td>
<td>32</td>
</tr>
</tbody>
</table>

Hvad slutligen djupet af incisura sternalis beträffar, uppnår detsamma aldrig halfva sternallängden, men är likväl ganska stort:

<table>
<thead>
<tr>
<th></th>
<th>incisura</th>
<th>sternallängd</th>
</tr>
</thead>
<tbody>
<tr>
<td>T. musicus</td>
<td>12</td>
<td>25</td>
</tr>
<tr>
<td>» pilaris</td>
<td>14</td>
<td>29</td>
</tr>
<tr>
<td>» merula</td>
<td>13</td>
<td>29</td>
</tr>
<tr>
<td>» torquatus</td>
<td>13</td>
<td>32</td>
</tr>
</tbody>
</table>

Hos T. torquatus hafva vi iakttagit en fenestra i stället för den för Oscines i öfrigt karakteristiska incisura sternalis.

Familj. Cinclinae.

Slägret Cinclus Bechst. företer, åtminstone hvad den skandinaviska arten beträffar, rätt mycken öfverensstämmelse med föregående familj och slägte, men skiljer sig dock tydligt derifrån genom den i ögonen fallande obetydliga höjden af crista sterni, äfvenså genom det ringa djupet af incisura sternalis:

{cristans höjd | halfva sternallängden
| 9 | 13 |

<table>
<thead>
<tr>
<th>sternalbredd</th>
<th>sternallängd</th>
</tr>
</thead>
<tbody>
<tr>
<td>C. aquaticus</td>
<td>22</td>
</tr>
</tbody>
</table>

{coracoidallängd | incisura
| 24 | 8 |

| 26 | 26 |

Scapulæ äro dessutom i sin distala del temligen breda samt tydligt utåtböjda.

Familj. Motacillinae.

De slägten, som hit höra, nemligen Motacilla L., Budytes Cuv., Anthus Bechst. och Pipastes Kaup., ansluta sig med afseende på proportionerna skelettdelarna emellan till den typ
af Osciniderna, som vi funnit uttalad hos fam. Turdinae, och förete sins emellan stor öfverensstämmelse. Så ega de nästan alla ett sternum, som i längd med 1 mm. öfverstiger coracoid-
dällängden:

<table>
<thead>
<tr>
<th></th>
<th>sternallängd</th>
<th>coracoidallängd</th>
</tr>
</thead>
<tbody>
<tr>
<td>Motacilla</td>
<td>18</td>
<td>17</td>
</tr>
<tr>
<td>Budytes</td>
<td>18</td>
<td>17</td>
</tr>
<tr>
<td>Anthus</td>
<td>17</td>
<td>16</td>
</tr>
<tr>
<td>Pipastes</td>
<td>19</td>
<td>17</td>
</tr>
</tbody>
</table>

Maximihöjden af crista sterni är, synnerligast hos Anthus och Pipastes stor:

| | cristans höjd | halfva sternal-
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Motacilla</td>
<td>9</td>
<td>10</td>
</tr>
<tr>
<td>Budytes</td>
<td>8</td>
<td>9</td>
</tr>
<tr>
<td>Anthus</td>
<td>8</td>
<td>8,5</td>
</tr>
<tr>
<td>Pipastes</td>
<td>9</td>
<td>9,5</td>
</tr>
</tbody>
</table>

Hvad beträffar sternalbredden, är den hos hithörande slägten proportionelt ungefär lika:

<table>
<thead>
<tr>
<th></th>
<th>sternalbredd</th>
<th>sternallängd</th>
</tr>
</thead>
<tbody>
<tr>
<td>Motacilla</td>
<td>14</td>
<td>18</td>
</tr>
<tr>
<td>Budytes</td>
<td>14</td>
<td>18</td>
</tr>
<tr>
<td>Anthus</td>
<td>14</td>
<td>17</td>
</tr>
<tr>
<td>Pipastes</td>
<td>15</td>
<td>19</td>
</tr>
</tbody>
</table>

Incisura sternalis eger ett djup af:

<table>
<thead>
<tr>
<th></th>
<th>incisura</th>
<th>sternallängd</th>
</tr>
</thead>
<tbody>
<tr>
<td>Motacilla</td>
<td>8</td>
<td>20</td>
</tr>
<tr>
<td>Budytes</td>
<td>7</td>
<td>18</td>
</tr>
<tr>
<td>Anthus</td>
<td>8</td>
<td>17</td>
</tr>
<tr>
<td>Pipastes</td>
<td>9</td>
<td>19</td>
</tr>
</tbody>
</table>

Familj. Phyllopseustinae.

Arterna till denna familjs slägten, Regulus Cuv. och Phyllo-
peustes Mex., påminna med afseende på skuldergördel och
bröstben i mer än ett hänseende om vissa representanter för
de förut omnämnda familjerna Lusciniinae och Saxicolinae. Hos
Phyllopseustes är längden af os coracoideum och den af ster-
num nästan lika, hos Regulus är den af bröstbenet 1 mm, kortare:

<table>
<thead>
<tr>
<th></th>
<th>sternallängd</th>
<th>coracoidallängd</th>
</tr>
</thead>
<tbody>
<tr>
<td>Phyllopseustes</td>
<td>14</td>
<td>14</td>
</tr>
<tr>
<td>Regulus</td>
<td>9</td>
<td>10</td>
</tr>
</tbody>
</table>
Båda hithörande släktens representanter ega en crista sterni, som i höjd med 1 mm. understiger sterni halva längd:

<table>
<thead>
<tr>
<th></th>
<th>cristans höjd</th>
<th>halva sternal- längden</th>
</tr>
</thead>
<tbody>
<tr>
<td>Phyllopseustes..</td>
<td>6</td>
<td>7</td>
</tr>
<tr>
<td>Regulus</td>
<td>3,5</td>
<td>4,5</td>
</tr>
</tbody>
</table>

Sternalbredden är ovanligt stor. Så är den hos Phyllopseustes lika med sternalängden, hos Regulus öfverstiger den nämnda längdmått med 1 mm.:

<table>
<thead>
<tr>
<th></th>
<th>sternalbredd</th>
<th>sternalängd</th>
</tr>
</thead>
<tbody>
<tr>
<td>Phyllopseustes..</td>
<td>14</td>
<td>14</td>
</tr>
<tr>
<td>Regulus</td>
<td>10</td>
<td>9</td>
</tr>
</tbody>
</table>

Incisura sternalis är temligen djup hos Phyllopseustes, der den understiger halva sternalängden med endast 1 mm., hos Regulus proportionelt djupare, der den öfverstiger nämnda längdmått:

<table>
<thead>
<tr>
<th></th>
<th>incisura</th>
<th>sternalängd</th>
</tr>
</thead>
<tbody>
<tr>
<td>Phyllopseustes..</td>
<td>6</td>
<td>14</td>
</tr>
<tr>
<td>Regulus</td>
<td>5</td>
<td>9</td>
</tr>
</tbody>
</table>

Familj. Sylviinæ.

Äfven inom denna familj finna vi en anläggning af bröstben och skuldergörödel, som i mycket erinrar om förhållandet hos representanterna för föregående familj och i samband dermed också med ordningen Oscines' tvenne första familjer. Alla de arter af släaget *Sylcia* LATH., som tillhöra den skandinaviska faunan, förte dessutom sims emellan en ovanligt stor öfverensstämmelse i proportionerna skelettdelarna emellan. Så är t. ex. sternalängden hos *S. atricapilla* L., *nisoria* BECHST. och *hortensis* LATH. 2 mm. kortare än motsvarande coracoidallängd:

<table>
<thead>
<tr>
<th></th>
<th>sternalängd</th>
<th>coracoidallängd</th>
</tr>
</thead>
<tbody>
<tr>
<td>S. atricapilla</td>
<td>13</td>
<td>15</td>
</tr>
<tr>
<td>hortensis......</td>
<td>13</td>
<td>15</td>
</tr>
<tr>
<td>nisoria</td>
<td>15</td>
<td>17</td>
</tr>
</tbody>
</table>

Cristans maximihöjd understiger halvans sternalängden med något mindre än 1 mm.:

<table>
<thead>
<tr>
<th></th>
<th>cristans höjd</th>
<th>halva sternal- längden</th>
</tr>
</thead>
<tbody>
<tr>
<td>S. atricapilla</td>
<td>6</td>
<td>6,5</td>
</tr>
<tr>
<td>hortensis......</td>
<td>6</td>
<td>6,5</td>
</tr>
<tr>
<td>nisoria</td>
<td>7</td>
<td>7,5</td>
</tr>
</tbody>
</table>
Sterni bredd och långd sammanfalla:

<table>
<thead>
<tr>
<th></th>
<th>sternalbredd</th>
<th>sternallängd</th>
</tr>
</thead>
<tbody>
<tr>
<td>S. atricapilla</td>
<td>13</td>
<td>13</td>
</tr>
<tr>
<td>» hortensis</td>
<td>13</td>
<td>13</td>
</tr>
<tr>
<td>» nisoria</td>
<td>15</td>
<td>15</td>
</tr>
</tbody>
</table>

Djupet af incisura sternalis understiger halvva sternallängden med något mindre än 1 mm.:

<table>
<thead>
<tr>
<th></th>
<th>incisura</th>
<th>sternallängd</th>
</tr>
</thead>
<tbody>
<tr>
<td>S. atricapilla</td>
<td>6</td>
<td>13</td>
</tr>
<tr>
<td>» hortensis</td>
<td>6</td>
<td>13</td>
</tr>
<tr>
<td>» nisoria</td>
<td>7</td>
<td>15</td>
</tr>
</tbody>
</table>

Familj. Calamodytinae.

(Denna familjs representanter ha vi tyvärr ej varit i tillfälle att granska.)

Familj. Parinae.

De slägten, som representera denna familj, nemligen Orites Moehr., Parus L., Cyanistes Kaup., Poecila Kaup. och Lophophanes Kaup., ansluta sig med afseende på bröstben och skuldergördel till den grupp inom ordningen Oscines, som karakteriseras genom ett kort och bredt sternum, hvars längd understiger den respektive coracoidallängden, och af hvilken grupp vi förrut funnit representanter i Sylvinae och andra familjer:

<table>
<thead>
<tr>
<th></th>
<th>sternallängd</th>
<th>coracoidallängd</th>
</tr>
</thead>
<tbody>
<tr>
<td>Orites</td>
<td>11</td>
<td>12</td>
</tr>
<tr>
<td>Parus</td>
<td>14</td>
<td>15</td>
</tr>
<tr>
<td>Cyanistes</td>
<td>13</td>
<td>14</td>
</tr>
<tr>
<td>Poecila</td>
<td>13</td>
<td>14</td>
</tr>
<tr>
<td>Lophophanes</td>
<td>12</td>
<td>13</td>
</tr>
</tbody>
</table>

Maximihöjden af crista sterni utgör:

<table>
<thead>
<tr>
<th></th>
<th>cristans höjd</th>
<th>halvva sternallängden</th>
</tr>
</thead>
<tbody>
<tr>
<td>Orites</td>
<td>4</td>
<td>5,5</td>
</tr>
<tr>
<td>Parus</td>
<td>5</td>
<td>7</td>
</tr>
<tr>
<td>Cyanistes</td>
<td>5</td>
<td>6,5</td>
</tr>
<tr>
<td>Poecila</td>
<td>4</td>
<td>6,5</td>
</tr>
<tr>
<td>Lophophanes</td>
<td>5</td>
<td>6</td>
</tr>
</tbody>
</table>

Hvad sternalbredden beträffar, är denna lika med eller öfverstiger motsvarande sternallängd:
EMIL HOLMGREN, DE SKANDINAVISKA FOGLARNES OSTEOLOGI.

<table>
<thead>
<tr>
<th></th>
<th>Sternalbredd</th>
<th>Sternallängd</th>
</tr>
</thead>
<tbody>
<tr>
<td>Orites</td>
<td>11</td>
<td>11</td>
</tr>
<tr>
<td>Parus</td>
<td>14</td>
<td>14</td>
</tr>
<tr>
<td>Cyanistes</td>
<td>13</td>
<td>13</td>
</tr>
<tr>
<td>Poecila</td>
<td>13</td>
<td>13</td>
</tr>
<tr>
<td>Lophophanes</td>
<td>13</td>
<td>12</td>
</tr>
</tbody>
</table>

Incisura sternalis eger ett djup af:

<table>
<thead>
<tr>
<th></th>
<th>Incisura</th>
<th>Sternallängd</th>
</tr>
</thead>
<tbody>
<tr>
<td>Orites</td>
<td>5</td>
<td>11</td>
</tr>
<tr>
<td>Parus</td>
<td>7</td>
<td>14</td>
</tr>
<tr>
<td>Cyanistes</td>
<td>5</td>
<td>13</td>
</tr>
<tr>
<td>Poecila</td>
<td>5</td>
<td>13</td>
</tr>
<tr>
<td>Lophophanes</td>
<td>5</td>
<td>12</td>
</tr>
</tbody>
</table>

Familj. Troglodytinae.

Äfven hithörande slägte, Troglodytes Koch., ansluter sig till den typ bland Osciniderna, hvaraf vi uti Parinæ sett en representant. Så understiger sternallängden med 2 mm. motsvarande coracoidallängd:

<table>
<thead>
<tr>
<th></th>
<th>Sternallängd</th>
<th>Coracoidallängd</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>10</td>
<td>12</td>
</tr>
</tbody>
</table>

och samma förhållande gör sig gällande beträffande cristans högsta resning gent emot halfva sternallängden:

<table>
<thead>
<tr>
<th></th>
<th>Cristans höjd</th>
<th>Halfva sternallängden</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>3</td>
<td>5</td>
</tr>
</tbody>
</table>

Sternalbredden öfverstiger med någon millimeter motsvarande längd af sternum:

<table>
<thead>
<tr>
<th></th>
<th>Sternalbredd</th>
<th>Sternallängd</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>11</td>
<td>10</td>
</tr>
</tbody>
</table>

Djupet af incisura sternalis är lika med respektive halfva sternallängd:

<table>
<thead>
<tr>
<th></th>
<th>Incisura</th>
<th>Sternallängd</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>5</td>
<td>10</td>
</tr>
</tbody>
</table>

Familj. Ficedulinæ.

(Representanter för denna familj ha saknats oss.)

Familj. Muscicapidæ.

Slägtet Muscicapa Briss. företer ett sternum, som är kortare än motsvarande coracoidallängd:
sternallängd coracoidallängd
15 16.
Maximihöjden af crista sterni är stor och utgör:
cristans höjd halfva sternallängden
7 7,5.
Sternalbredden är lika med den respektive sternallängden:
sternalbredd sternallängd
15 15.
Djupet af incisura sternalis utgör under ofvanstående öfriga måttförhållanden 6 mm.

Familj. Ampelidæ.

Det enda hithörande slägtet, *Ampelis* L., eger ett sternum, som i längd motsvarar längden af os coracoideum:
sternallängd coracoidallängd
23 23.
Crista sterni företer en hög resning:
cristans höjd halfva sternallängden
12 11,5.
Sternalbredd och sternallängd sammanfalla:
sternalbredd sternallängd
23 23.
Djupet af incisura sternalis utgör:
incisura sternallängd
10 23.

Familj. Oriolinae.

Oriolus L. åter ansluter sig till den typ, som representeras bland andra familjer af *Turdinae*. Så överträffar bröstbenet i längd med 2 mm. motsvarande längd af os coracoideum:
sternallängd coracoidallängd
26 24.
Crista sterni understiger i höjd halfva sternallängden:
cristans höjd halfva sternallängden
11 13;
och sternalbredden når ej motsvarande sternallängd:
sternalbredd sternallängd
23 26.
Djupet av incisura sternalis utgör endast:

\[
\begin{array}{c|c}
\text{incisura} & \text{sternallängd} \\
8 & 26.
\end{array}
\]

Familj. Laniinæ.

De två slägten af denna familj, hvaraf representanter förekomma inom de skandinaviska gränserna, *Enneoctonus Boie* och *Lanius L.*, tillhöra den typ bland Oscines, som utmärker sig genom ett kort och bredt sternum och proportionelt långt coracoidalben. Sins emellan, förete dock de båda slägtena någon skillnad, i det att sternum i längd hos det förstnämnda understiger, men hos det senare är lika med motsvarande coracoidallängd:

\[
\begin{array}{c|c}
\text{sternallängd} & \text{coracoidallängd} \\
\hline
\text{Enneoctonus} & 16 & 18 \\
\text{Lanius} & 24 & 24.
\end{array}
\]

Höjden af crista sterni utgör:

\[
\begin{array}{c|c}
\text{crista sterni} & \text{halfva sternallängden} \\
\hline
\text{Enneoctonus} & 7 & 8 \\
\text{Lanius} & 10 & 12.
\end{array}
\]

Den proportionella sternalbredden är ej heller lika hos de båda slägtena:

\[
\begin{array}{c|c}
\text{sternalbredd} & \text{sternallängd} \\
\hline
\text{Enneoctonus} & 17 & 16 \\
\text{Lanius} & 22 & 24.
\end{array}
\]

Incisura sternalis är hos båda grund:

\[
\begin{array}{c|c}
\text{incisura} & \text{sternallängd} \\
\hline
\text{Enneoctonus} & 5 & 16 \\
\text{Lanius} & 9 & 24.
\end{array}
\]

Familj. Accentorinæ.

(Har saknats oss.)

Familj. Chloridinæ.

somitis Boie. Carduelis Cuv., Aegiothus Caban. och Linota Bonap., förete nemligen Pinicola, Pyrrhula och Aegiothus ett sternum, som i längd antingen motsvarar den respektive coracoidallängden eller understiger denna senare. Hos öfriga hithörande slägen deremot är sternallängden större än motsvarande längd af os coracoideum:

<table>
<thead>
<tr>
<th></th>
<th>sternallängd</th>
<th>coracoidallängd</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pinicola</td>
<td>23</td>
<td>23</td>
</tr>
<tr>
<td>Pyrrhula</td>
<td>19</td>
<td>19</td>
</tr>
<tr>
<td>Aegiothus</td>
<td>14</td>
<td>15</td>
</tr>
<tr>
<td>Ligurinus</td>
<td>19</td>
<td>18</td>
</tr>
<tr>
<td>Chrysomitisris</td>
<td>14</td>
<td>13</td>
</tr>
<tr>
<td>Carduelis</td>
<td>16</td>
<td>15</td>
</tr>
<tr>
<td>Linota</td>
<td>18</td>
<td>16</td>
</tr>
</tbody>
</table>

Högsta resningen på crista sterni utgör:

<table>
<thead>
<tr>
<th></th>
<th>cristans höjd</th>
<th>halva sternallängden</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pinicola</td>
<td>10</td>
<td>11.5</td>
</tr>
<tr>
<td>Pyrrhula</td>
<td>8</td>
<td>9.5</td>
</tr>
<tr>
<td>Aegiothus</td>
<td>6</td>
<td>7</td>
</tr>
<tr>
<td>Ligurinus</td>
<td>8</td>
<td>9.5</td>
</tr>
<tr>
<td>Chrysomitisris</td>
<td>6</td>
<td>7</td>
</tr>
<tr>
<td>Carduelis</td>
<td>8</td>
<td>8</td>
</tr>
<tr>
<td>Linota</td>
<td>8</td>
<td>9</td>
</tr>
</tbody>
</table>

Hvad sternalbredden beträffar, finna vi densamma hos Pinicola, Pyrrhula och Aegiothus motsvara den respektive sternallängden, hos öfriga slägten understiga denna senare:

<table>
<thead>
<tr>
<th></th>
<th>sternalbredd</th>
<th>sternallängd</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pinicola</td>
<td>23</td>
<td>23</td>
</tr>
<tr>
<td>Pyrrhula</td>
<td>19</td>
<td>19</td>
</tr>
<tr>
<td>Aegiothus</td>
<td>14</td>
<td>14</td>
</tr>
<tr>
<td>Ligurinus</td>
<td>16</td>
<td>19</td>
</tr>
<tr>
<td>Chrysomitisris</td>
<td>11</td>
<td>14</td>
</tr>
<tr>
<td>Carduelis</td>
<td>14</td>
<td>16</td>
</tr>
<tr>
<td>Linota</td>
<td>14</td>
<td>18</td>
</tr>
</tbody>
</table>

Djupet af incisura sternalis företer icke något anmärkningsvärdt:

<table>
<thead>
<tr>
<th></th>
<th>incisura</th>
<th>sternallängd</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pinicola</td>
<td>12</td>
<td>23</td>
</tr>
<tr>
<td>Pyrrhula</td>
<td>9,5</td>
<td>19</td>
</tr>
<tr>
<td>Aegiothus</td>
<td>7</td>
<td>14</td>
</tr>
</tbody>
</table>
EMIL HOLMGREN, DE SKANDINAVISKA FÖGLARNES OSTELOGI.

incisura sternallängd
Ligurinus.......... 8 19
Chrysomitis......... 6 14
Carduelis........... 7 16
Linota............... 7 18.

Familj. Fringillinae.

Hithörande skandinaviska slägten, *Coccothraustes* BRISS., *Fringilla* L. och *Passer* BRISS., ega alla ett sternum, som i längd öfverträffar längden af motsvarande os coracoideum:

<table>
<thead>
<tr>
<th></th>
<th>sternallängd</th>
<th>coracoiddallängd</th>
</tr>
</thead>
<tbody>
<tr>
<td>Coccothraustus</td>
<td>24</td>
<td>22</td>
</tr>
<tr>
<td>Fringilla</td>
<td>17</td>
<td>16</td>
</tr>
<tr>
<td>Passer</td>
<td>19</td>
<td>18.</td>
</tr>
</tbody>
</table>

Cristans största höjd utgör:

<table>
<thead>
<tr>
<th></th>
<th>cristans höjd</th>
<th>halfva sternallängden</th>
</tr>
</thead>
<tbody>
<tr>
<td>Coccothraustes</td>
<td>12</td>
<td>12</td>
</tr>
<tr>
<td>Fringilla</td>
<td>8</td>
<td>8.5</td>
</tr>
<tr>
<td>Passer</td>
<td>8</td>
<td>9.5.</td>
</tr>
</tbody>
</table>

Sternalbredden understiger motsvarande sternallängd:

<table>
<thead>
<tr>
<th></th>
<th>sternalbred</th>
<th>sternallängd</th>
</tr>
</thead>
<tbody>
<tr>
<td>Coccothraustes</td>
<td>20</td>
<td>24</td>
</tr>
<tr>
<td>Fringilla</td>
<td>15</td>
<td>17</td>
</tr>
<tr>
<td>Passer</td>
<td>17</td>
<td>19.</td>
</tr>
</tbody>
</table>

Djupet af incisura sternalis när ej halfva sternallängden:

<table>
<thead>
<tr>
<th></th>
<th>incisura</th>
<th>sternallängd</th>
</tr>
</thead>
<tbody>
<tr>
<td>Coccothraustes</td>
<td>10</td>
<td>24</td>
</tr>
<tr>
<td>Fringilla</td>
<td>8</td>
<td>17</td>
</tr>
<tr>
<td>Passer</td>
<td>7</td>
<td>19.</td>
</tr>
</tbody>
</table>

Fringilliderna förete en mer eller mindre skarpt framträdande spina sterni interna, hvilken dock städse sammanflyter med spina sterni externa, såmedelst bildande ett septum interarticulare. Hos Fringilla Coelebs är denna process synnerligen tydligt uttalad, hos öfriga deremot oftast framträdande endast såsom en skarp kant utefter midttlinien af spina sterni externa.

Familj. Loxiinae.

Det enda hithörande slägtet, *Loxia* L., företer med afseende på bröstben och skuldergördel proportioner, som vi
icke varit i tillfälle att iakttaga hos någon vare sig föregående eller efterföljande familj inom ordningen Oscines. Till ingendera af de två typer, uti hvilka vi funnit Oscinidaerna för öfrigt delade, kunna representanterna för hithörande slägte räknas. Vi finna nemligen os coracoideum till sin längd aningen öfverstiga eller motsvara den respektive sternallängden, på samma gång som sternalbredden städse understiger sternallängden.

<table>
<thead>
<tr>
<th></th>
<th>sternallängd</th>
<th>coracoidallängd</th>
</tr>
</thead>
<tbody>
<tr>
<td>L. leucoptera</td>
<td>18</td>
<td>20</td>
</tr>
<tr>
<td>» curvirostra</td>
<td>20</td>
<td>20</td>
</tr>
</tbody>
</table>

Crista sterni är jemförelsevis hög, i det att den eger en resning, som motsvarar halvva sternallängden:

<table>
<thead>
<tr>
<th></th>
<th>cristans höjd</th>
<th>halvva sternallängden</th>
</tr>
</thead>
<tbody>
<tr>
<td>L. leucoptera</td>
<td>9</td>
<td>9</td>
</tr>
<tr>
<td>» curvirostra</td>
<td>10</td>
<td>10</td>
</tr>
</tbody>
</table>

Sternalbredden understiger, såsom vi ofvan påpekat, den respektive sternallängden:

<table>
<thead>
<tr>
<th></th>
<th>sternallängd</th>
<th>coracoidallängd</th>
</tr>
</thead>
<tbody>
<tr>
<td>L. leucoptera</td>
<td>16</td>
<td>18</td>
</tr>
<tr>
<td>» curvirostra</td>
<td>18</td>
<td>20</td>
</tr>
</tbody>
</table>

Incisura sternalis utgör:

<table>
<thead>
<tr>
<th></th>
<th>incisura</th>
<th>sternallängd</th>
</tr>
</thead>
<tbody>
<tr>
<td>L. leucoptera</td>
<td>8</td>
<td>18</td>
</tr>
<tr>
<td>» curvirostra</td>
<td>8</td>
<td>20</td>
</tr>
</tbody>
</table>

Familj. Emberizinæ.

Hithörande skandinaviska slägten, Crithophaga CAB., Emberiza L., Conchramus Sundev., Glycyspina CAB., Centrophanes KAUP. och Plectrophanes MEYER, ansluta sig med afseende på byggnaden af skuldergördel och bröstben till den grupp af Oscines, för hvilken familjen Turdinae kan ställas såsom typ. — Så öfverstiger städse sternallängden den respektive coracoidallängden:

<table>
<thead>
<tr>
<th></th>
<th>sternallängd</th>
<th>coracoidallängd</th>
</tr>
</thead>
<tbody>
<tr>
<td>Crithophaga</td>
<td>26</td>
<td>24</td>
</tr>
<tr>
<td>Emberiza</td>
<td>22</td>
<td>20</td>
</tr>
<tr>
<td>Conchramus</td>
<td>18</td>
<td>16</td>
</tr>
<tr>
<td>Glycyspina</td>
<td>20</td>
<td>18</td>
</tr>
<tr>
<td>Plectrophanes</td>
<td>22</td>
<td>20</td>
</tr>
</tbody>
</table>
Åfven vis-à-vis cristas höjd gent emot halva sternallängden finna vi nära nog proportionelt lika öfverensstämmande siffror som vid ofvan angifna värden:

<table>
<thead>
<tr>
<th></th>
<th>cristas höjd</th>
<th>halva sternallängden</th>
</tr>
</thead>
<tbody>
<tr>
<td>Crithophaga</td>
<td>12</td>
<td>13</td>
</tr>
<tr>
<td>Emberiza</td>
<td>10</td>
<td>11</td>
</tr>
<tr>
<td>Cenchramus</td>
<td>8</td>
<td>9</td>
</tr>
<tr>
<td>Glycyspina</td>
<td>9</td>
<td>10</td>
</tr>
<tr>
<td>Plectrophanes</td>
<td>10</td>
<td>11</td>
</tr>
</tbody>
</table>

Sternalbredden understiger motsvarande sternallängd:

<table>
<thead>
<tr>
<th></th>
<th>sternalbredd</th>
<th>sternallängd</th>
</tr>
</thead>
<tbody>
<tr>
<td>Crithophaga</td>
<td>22</td>
<td>26</td>
</tr>
<tr>
<td>Emberiza</td>
<td>18</td>
<td>22</td>
</tr>
<tr>
<td>Cenchramus</td>
<td>15</td>
<td>18</td>
</tr>
<tr>
<td>Glycyspina</td>
<td>16</td>
<td>20</td>
</tr>
<tr>
<td>Plectrophanes</td>
<td>20</td>
<td>22</td>
</tr>
</tbody>
</table>

Djupet af incisura sternalis utgör:

<table>
<thead>
<tr>
<th></th>
<th>incisura</th>
<th>sternallängd</th>
</tr>
</thead>
<tbody>
<tr>
<td>Crithophaga</td>
<td>10</td>
<td>26</td>
</tr>
<tr>
<td>Emberiza</td>
<td>9</td>
<td>22</td>
</tr>
<tr>
<td>Cenchramus</td>
<td>7</td>
<td>18</td>
</tr>
<tr>
<td>Glycyspina</td>
<td>8</td>
<td>20</td>
</tr>
<tr>
<td>Plectrophanes</td>
<td>9</td>
<td>22</td>
</tr>
</tbody>
</table>

Familj. Sturninæ.

Det egentligen enda slägte och dermed den enda art. som är representerad inom det skandinaviska området, nemligen *Sturnus vulgaris* L., eger med afseende på proportionerna hos bröstben och skuldergördel den första ordningens allmännare karakterer. — Så öfverstiger sternum i längd med 2 mm. motsvarande coracoidallängd:

<table>
<thead>
<tr>
<th>sternallängd</th>
<th>coracoidallängd</th>
</tr>
</thead>
<tbody>
<tr>
<td>27</td>
<td>25</td>
</tr>
</tbody>
</table>

Maximihöjden af crista sterni när ej halva sternallängden:

<table>
<thead>
<tr>
<th></th>
<th>cristas höjd</th>
<th>halva sternallängden</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>12</td>
<td>13,5</td>
</tr>
</tbody>
</table>
Hvad sternalbredden beträffar, understiger denna motsvarande sternallängd:

<table>
<thead>
<tr>
<th>sternalbredd</th>
<th>sternallängd</th>
</tr>
</thead>
<tbody>
<tr>
<td>24</td>
<td>27</td>
</tr>
</tbody>
</table>

Djupet af incisura sternalis når ej den respektive halfva sternallängden:

<table>
<thead>
<tr>
<th>incisura</th>
<th>sternallängd</th>
</tr>
</thead>
<tbody>
<tr>
<td>13</td>
<td>27</td>
</tr>
</tbody>
</table>

Familj. Nucifraginæ.

Äfven hithörande slägte, *Nucifraga Viell.*, närmar sig till den inom Oscines något talrikare representerade typen, churu-vål det förer en del avvikande förhållanden med afseende på proportionerna. — Sternum öfverstiger i längd med 3 mm. coracoidallängden:

<table>
<thead>
<tr>
<th>sternallängd</th>
<th>coracoidallängd</th>
</tr>
</thead>
<tbody>
<tr>
<td>34</td>
<td>31</td>
</tr>
</tbody>
</table>

Crista sterni är temligen låg; den understiger nemligen i höjd med 4 mm. halfva sternallängden:

<table>
<thead>
<tr>
<th>cristans höjd</th>
<th>halfva sternallängden</th>
</tr>
</thead>
<tbody>
<tr>
<td>13</td>
<td>17</td>
</tr>
</tbody>
</table>

Sternalbredden understiger sternallängden:

<table>
<thead>
<tr>
<th>sternalbredd</th>
<th>sternallängd</th>
</tr>
</thead>
<tbody>
<tr>
<td>31</td>
<td>34</td>
</tr>
</tbody>
</table>

Incisura sternalis är grund:

<table>
<thead>
<tr>
<th>incisura</th>
<th>sternallängd</th>
</tr>
</thead>
<tbody>
<tr>
<td>12</td>
<td>34</td>
</tr>
</tbody>
</table>

Familj. Garrulinæ.

Inom denna familjs skandinaviska slägten, nemligen *Pica Briss.*, *Perisoreus Boup.* och *Garrulus Briss.*, finna vi representeranter för båda de typer, i hvilka vi sett ordningen Oscines kunna indelas. — Så eger Pica ett sternum, som i längd med 5 mm. öfverstiger coracoidallängden, ett förhållande som vi återfinna ärven inom slägnet Garrulus; då deremot hos Perisoreus sternal- och coracoidallängd sammanfalla:

<table>
<thead>
<tr>
<th>sternallängd</th>
<th>coracoidallängd</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pica.........</td>
<td>35</td>
</tr>
<tr>
<td>Garrulus.....</td>
<td>34</td>
</tr>
<tr>
<td>Perisoreus...</td>
<td>23</td>
</tr>
</tbody>
</table>
EMIL HOLMGREN, DE SKANDINAVISKA FOGLARNES OSTEOLGI.

Anmärkningsvärd är den obetydliga resningen af crista sterni — synnerligast hos Garrulus och Perisoreus:

<table>
<thead>
<tr>
<th>Crista sterni höjd</th>
<th>Halftva sternallängden</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pica</td>
<td>14</td>
</tr>
<tr>
<td>Garrulus</td>
<td>11</td>
</tr>
<tr>
<td>Perisoreus</td>
<td>7</td>
</tr>
</tbody>
</table>

Hos Perisoreus understiger sternallängden den respektive sternalbredden, då åter hos Pica och Garrulus ett motsatt förhållande gör sig gällande, något som ju också står i korrelation till differensen i längd mellan sternum och os coracoideum hos hithörande slägten:

<table>
<thead>
<tr>
<th>Sternalbredd</th>
<th>Sternallängd</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pica</td>
<td>30</td>
</tr>
<tr>
<td>Garrulus</td>
<td>29</td>
</tr>
<tr>
<td>Perisoreus</td>
<td>24</td>
</tr>
</tbody>
</table>

Djupet af incisura sternalis slutligen är hos dessa tre slägten proportionelt olika, men understiger dock hos dem alla halftva sternallängden:

<table>
<thead>
<tr>
<th>Incisura</th>
<th>Sternallängd</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pica</td>
<td>14</td>
</tr>
<tr>
<td>Garrulus</td>
<td>11</td>
</tr>
<tr>
<td>Perisoreus</td>
<td>10</td>
</tr>
</tbody>
</table>

Familj. Corvinæ.

De hithörande slägtena Lycos Boie, Trypanocorax Kaup. och Corvus L. ega alla ganska stor likformighet med afseende på proportionerna af de skelettdelar vi behandla. Så öfverstiger städse sternallängden den respektive coradoideallängden:

<table>
<thead>
<tr>
<th>Sternullängd</th>
<th>Coradoideallängd</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lycos</td>
<td>38</td>
</tr>
<tr>
<td>Trypanocorax</td>
<td>47</td>
</tr>
<tr>
<td>Corvus (corax)</td>
<td>67</td>
</tr>
</tbody>
</table>

om också, såsom vi finna hos Corvus — såväl corax som cornix — differensen är rätt betydlig gent emot förhållandet hos Lycos och Trypanocorax.

Höjden af crista sterni när aldrig halftva sternallängden — hos Lycos närmar den sig dock detta mått ganska mycket:
Kristans höjd half sternallängd

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Lycos</td>
<td>15</td>
<td>19</td>
</tr>
<tr>
<td>Trypanocorax</td>
<td>18</td>
<td>23,5</td>
</tr>
<tr>
<td>Corvus (cornix)</td>
<td>18</td>
<td>25,5</td>
</tr>
</tbody>
</table>

Äfvenså öfverstiger hos hithörande slägten sternallängden städse den respektive sternalbredden:

<table>
<thead>
<tr>
<th></th>
<th>sternalreppd</th>
<th>sternallängd</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lycos</td>
<td>32</td>
<td>38</td>
</tr>
<tr>
<td>Trypanocorax</td>
<td>38</td>
<td>47</td>
</tr>
<tr>
<td>Corvus (cornix)</td>
<td>42</td>
<td>51</td>
</tr>
</tbody>
</table>

Hvad slutligen djupet af incisura sternalis beträffar, finna vi följande värden:

<table>
<thead>
<tr>
<th></th>
<th>incisura</th>
<th>sternallängd</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lycos</td>
<td>13</td>
<td>38</td>
</tr>
<tr>
<td>Trypanocorax</td>
<td>13</td>
<td>47</td>
</tr>
<tr>
<td>Corvus (cornix)</td>
<td>13,5</td>
<td>51</td>
</tr>
</tbody>
</table>

Hos särskilt de större formerna af familjen Corvinae iakttaga vi dessutom ett intint samband mellan margo anterio cristae sterni och processus episternalis furculae. Den bakre randen af nämnda process plägar nemligen vara mer eller mindre tillplattad och stå i kontakt med en äfvenledes ansväld och tillplattad tuberositet å crista sternalis.

Familj. Certhiinæ.

De skandinaviska slägten, som hit höra, nemligen Certhia L. och Sitta L., afvika i flera hänseenden från den för Oscines allmänna och de släkterna Turdinae, och nära sig genom sina proportioner till den jämförelsevis mindre talrikt representerade typ, som vi funnit uttalad hos familjen Saxicolinae och andra. Så finna vi hos båda hithörande slägten ett sternum, som i längd understiger den respektive coracoidallängden:

<table>
<thead>
<tr>
<th></th>
<th>sternallängd</th>
<th>coracoidallängd</th>
</tr>
</thead>
<tbody>
<tr>
<td>Certhia</td>
<td>10</td>
<td>11</td>
</tr>
<tr>
<td>Sitta</td>
<td>15</td>
<td>16</td>
</tr>
</tbody>
</table>

Höjden af crista sterni understiger halfva sternallängden:

<table>
<thead>
<tr>
<th></th>
<th>cristans höjd</th>
<th>half sternallängd</th>
</tr>
</thead>
<tbody>
<tr>
<td>Certhia</td>
<td>3,5</td>
<td>5</td>
</tr>
<tr>
<td>Sitta</td>
<td>6,5</td>
<td>7,5</td>
</tr>
</tbody>
</table>
Sternalbredden öfverstiger med en eller annan millimeter den motsvarande sternallängden:

<table>
<thead>
<tr>
<th></th>
<th>sternallängd</th>
<th>sternallängd</th>
</tr>
</thead>
<tbody>
<tr>
<td>Certhia</td>
<td>13</td>
<td>10</td>
</tr>
<tr>
<td>Sitta</td>
<td>17</td>
<td>15</td>
</tr>
</tbody>
</table>

För slutligen incisura sternalis hafva vi iakttagit följande:

<table>
<thead>
<tr>
<th></th>
<th>incisura</th>
<th>sternallängd</th>
</tr>
</thead>
<tbody>
<tr>
<td>Certhia</td>
<td>5</td>
<td>10</td>
</tr>
<tr>
<td>Sitta</td>
<td>8</td>
<td>15</td>
</tr>
</tbody>
</table>

Synnerligast hos Sitta markera sig scapulæ genom sin något ovanliga bredd och sina starkt utåtböjda spetsar.

Familj. Hirundininae.

De till Hirundininae hörande slägtena, nemligen *Hirundo* L., *Chelidon* Boie och *Cotyle* Boie visa sig till byggnaden af bröstben och skuldergördel tillhöra den allmännast gällande typen inom Oscines. — Så öfverstiger sternallängden den motsvarande coracoidallängden:

<table>
<thead>
<tr>
<th></th>
<th>sternallängd</th>
<th>coracoidallängd</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hirundo</td>
<td>16</td>
<td>15</td>
</tr>
<tr>
<td>Chelidon</td>
<td>16</td>
<td>15</td>
</tr>
<tr>
<td>Cotyle</td>
<td>15</td>
<td>14</td>
</tr>
</tbody>
</table>

Maximihöjden af crista sterni utgör:

<table>
<thead>
<tr>
<th></th>
<th>cristans höjd</th>
<th>halfva sternallängden</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hirundo</td>
<td>7</td>
<td>8</td>
</tr>
<tr>
<td>Chelidon</td>
<td>7</td>
<td>8</td>
</tr>
<tr>
<td>Cotyle</td>
<td>7</td>
<td>7,5</td>
</tr>
</tbody>
</table>

Sternalbredden understiger den respektive längden af sternum:

<table>
<thead>
<tr>
<th></th>
<th>sternallbredd</th>
<th>sternallängd</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hirundo</td>
<td>12</td>
<td>16</td>
</tr>
<tr>
<td>Chelidon</td>
<td>15</td>
<td>16</td>
</tr>
<tr>
<td>Cotyle</td>
<td>14</td>
<td>15</td>
</tr>
</tbody>
</table>

Djupet af incisura sternalis eger följande värde:

<table>
<thead>
<tr>
<th></th>
<th>incisura</th>
<th>sternallängd</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hirundo</td>
<td>6</td>
<td>16</td>
</tr>
<tr>
<td>Chelidon</td>
<td>6</td>
<td>16</td>
</tr>
<tr>
<td>Cotyle</td>
<td>6</td>
<td>15</td>
</tr>
</tbody>
</table>
Familj. Alaudinae.

<table>
<thead>
<tr>
<th>Släkte</th>
<th>Sternalängd</th>
<th>Coracoidallängd</th>
</tr>
</thead>
<tbody>
<tr>
<td>Otocorys</td>
<td>23</td>
<td>21</td>
</tr>
<tr>
<td>Alauda</td>
<td>23</td>
<td>21</td>
</tr>
<tr>
<td>Galerita</td>
<td>20</td>
<td>18</td>
</tr>
</tbody>
</table>

Sternalbredden när ej motsvarande sternalängd:

<table>
<thead>
<tr>
<th>Släkte</th>
<th>Sternalbredd</th>
<th>Sternalängd</th>
</tr>
</thead>
<tbody>
<tr>
<td>Otocorys</td>
<td>20</td>
<td>23</td>
</tr>
<tr>
<td>Alauda</td>
<td>19</td>
<td>23</td>
</tr>
<tr>
<td>Galerita</td>
<td>17</td>
<td>20</td>
</tr>
</tbody>
</table>

Crista sterni är temligen hög:

<table>
<thead>
<tr>
<th>Släkte</th>
<th>Cristans höjd</th>
<th>Half sternallängd</th>
</tr>
</thead>
<tbody>
<tr>
<td>Otocorys</td>
<td>10</td>
<td>11,5</td>
</tr>
<tr>
<td>Alauda</td>
<td>10</td>
<td>11,5</td>
</tr>
<tr>
<td>Galerita</td>
<td>9</td>
<td>10</td>
</tr>
</tbody>
</table>

Djupet af incisura sternalis motsvarar höjden af crista sterni:

<table>
<thead>
<tr>
<th>Släkte</th>
<th>Incisura</th>
<th>Sternalängd</th>
</tr>
</thead>
<tbody>
<tr>
<td>Otocorys</td>
<td>10</td>
<td>23</td>
</tr>
<tr>
<td>Alauda</td>
<td>10</td>
<td>23</td>
</tr>
<tr>
<td>Galerita</td>
<td>9</td>
<td>20</td>
</tr>
</tbody>
</table>

Familj. Upupinae. (Tafl. II, fig. 3.)

Upupa eops L. företer med afseende på byggnaden af bröstben och skuldergördel så många väsentliga detaljer, som afvika från de förhållanden vi förut hos Oscines lärt känna, att man ingalunda saknar anledning betvifla, att Härfogelns rätta plats är den, der han hit-tills blifvit stäld; synnerligast som ju alla öfriga Oscinider till sin struktur äro hvarandra så förvillande lika.

Hvad de allmänna måttbestämningarna beträffar, öfver-stiger sternum i längd motsvarande coracoidallängd:
Maximihöjden af crista sterni utgör:
cristans höjd half sternallängd
12 13.

Sternalbredden understiger den respektive sternallängden:
sternalbred sternallängd
20 26.

Djupet af incisura sternalis är proportionelt ganska litet:
incisura sternallängd
8 26.

Den med sin margo anterior ovanligt långt framspringande crista sterni och frånvaron af någon direkt med furculan förenad processus episternalis leda oss ovilkorligen till den mening, att större delen af lamina mediana af membrana sterno-coraco-clavicularis blifvit förbenad och förenats med bröstbenskammen, en åsig, som ytterligare stärkes deraf, att furculans sternala del nästan direkt stöter till cristans margo anterior. — Ett likartadt förhållande påträffa vi äfven inom vissa grupper af följande ordning.
Os coracoideum eger, i motsats till hvad vi förut lärt känna inom Oscines, en kraftigt utvecklad processus procoralcoideus, hvilkens framåt och nedåt riktrade kant bakåt slutar i en hamulus och framåt kan vara synostoscerad med aero-coracoideum. Vid den sternalna delen iaktta vi å margao medialis ett inåt och något framåt riktadt utskott, och processus lateralis är bred och långt utdragen.

Sammanfattning.

Om vi undantaga den i flera strukturlänseenden från öfriga familjer så divergerande och sjelfständiga familjen Upupinae, tyckes ordningen Oscines kunna med afseende på byggnaden af bröstben och skuldergördel delas i tvenne till proportionerna skelettdelarne emellan alldeles motsatta grupper. Den ena, till hvilken ansluta sig familjerna Lasciniinae (delvis), Saxicolinae, Phyllopseustinae, Sylviinae, Calamodytinae, Parinae, Troglodytinae, Ficedulinae, Muscicapidae, Laniinae (delvis), Accentorinae, Chloridinae (delvis), Garrulinae (delvis) och Certhiinae, eger ett kort och bredt sternum, hvars längd understiger eller i några fall är lika med längden af os coracoideum och hvars bredd öfverstiger eller motsvarar den respektive sternallängden (Tafl. II, fig. 2); den andra åter, hvilken representeras af flertalet slägten inom öfriga familjer och af några inom de öfvan uppräknade samt kan sägas utgöra den för Oscines mera karakteristiska typen — sådan vi funnit den väl uttalad hos familjen Turdinae, — företer ett mera längdraget bröstben, hvars längd öfverstiger den respektive coracoidallängden och hvars bredd aldrig när den motsvarande sternallängden (Tafl. II, fig. 1).

Från dessa båda typer afviker dock en enda familj, nemligen Loxiinae, hvilken eger ett i förhållande till os coracoideum kort sternum, men på samma gång dessutom en sternalbredd, som ej så obetydligt understiger motsvarande sternallängd. En tendens i samma riktning kunna vi dock afven spåra hos ett och annat slägte inom öfriga till Oscines hörande familjer.

En partiel ossifikation af episternalapparaten funna vi i den platta, sagittalt ställda benlamell, som vi lärt känna under namn af proc. episternalis furcula. Någon gång se vi denna i direkt förbindelse med crista sterni, — så hos de större re-
presentanterna för ordningen Oscines, hos Corvinae —; och i samband med specielt de mäktiga förstärkningarna i de laterala bladen af membra sterno-coraco-clavicularis (ligamenta sterno-acrocoracoidea) har den för berörda ordning karakteristiska furcularbildningen af spina sterni externa uppstått.

Endast den sista af de inom ordningen Oscines inrymda familjerna, nemligen Upupinae, markerar sig genom någon sär-

egen struktur från de i öfrigt så genomgående allmänna karak-
tererna, men så är också arten af denna differentiering sådan, att man knappast kan finna något moment, som talar för den plats inom systemet, ifrågavarande familj ännu eger. Mycket tyckes deremot peka på en vida närmare frändskap till de sins emellan för öfrigt så heterogena, men från ordningen Oscines så distinkt skilda representanterna för följande ord-
ning, nemligen Volucres. Och bland dessa måhända närmast till Meropinae. Bland utomskandinaviska former ha vi funnit familjen Upupinae synnerligen öfverensstämmande med det afrikanska slägget Irrisor, som, äfven det, af Sundevall blifvit ställdt inom Oscines. — Erinra vi oss derjemte de förhållanden, under hvilka Härfogeln lefver, och det sätt, på hvilket han uppträder, kunna vi väl icke heller förneka, att vi äfven derut-
inman iakttaga detaljer, som för öfriga Oscinider äro fullkom-
ligt främmande.

I stället för det hos öfriga Oscinider förefintliga lig. sterno-
aecoracoideum, finna vi hos Upupinae — i samband med den kraftiga utvecklingen af proc. procoracoideus — ett lig. stern-
procoracoideum.
ORDNING II.

Volucres (Tafl. II, figg. 4—8 och III figg. 1—3).

Ha vi uti Oscines haft att göra med en ordning inom fögelsystemet, som nära nog öfverallt erbjudit den största likformighet i byggnaden af de skelettdelar vi behandla, så stå vi nu deremot inför en annan, der ett så helt motsatt förhållande gör sig gällande, att vi knappast kunna spåra någon enda för hela ordningen genomgående karakter. Deremot finna vi för skilda, bestämnda grupper inom andra ordningen fixa strukturförhållanden, och vi blifva i följd deraf i tillfälle att begagna oss af samma indelning i Cohortes, hvaruti Sundevall sönderdelat Volucres.

I ett afseende tyckas dock hithörande slägten ega åtminstone tillnärmelsevis något gemensamt, och detta är med hän- syn till stern-coracoidalleden. Vi sköna nemligen hos nästan samtliga Volucres i de mot hvarandra svarande ytorna af coraco- coid och sternum förutsättningar för en vida större exkursion i nämnda led, än förhållandet torde vara inom Oscines.

Hvad öfverensstämmelsen med föregående ordning beträffar, framgår af det ofvan sagda, att den bör vara nära nog ingen. Bland de hithörande europeiska, respektive skandinaviska FORMerna tyckes dock en grupp (Cohors II, Pici) med afseende på byggnaden af bröstben och skuldergördel i någon mån nära sig till de karaktérer vi iakttagit inom Oscines; och torde sålunda nämnda grupp äfven i detta hänseende rättfärda den plats den eger bland europeiska former, nemligen att inleda den andra ordningen.

Cohors II (Pici). (Tafl. II, figg. 4 och 5).

Hackspettarnes proportionelt korta scapula är i sin distala del ej spetsigt utdragen (undantag Lynginae), utan aftrubbad och ofta förtjockad samt utåt hakformigt böjd. Det kraftigt utvecklade acromion eger å sin facies medialis en bred trian-
E. Holmgren, De Skandinaviska Foglarnes Osteologi.

Gul är yta, mot hvilken den äfvenså breda och triangulära pars coracoidalis claviculae ledar. — Hos Oscines iakttogo vi å acromion en likartad facies clavicularis, men der egde densamma en annan ställning, i det att den var riktad framåt och medialt, beroende på den proportionelt mindre utvecklade extremitas coracoidalis claviculae.

Os coracoidaleum är temligen långt och utdraget, med ett framspringande acrocoracoideum. Pars sternalis är tjock och endast med sin processus lateralis tillplattad. Linea intermuscularis interna fram träder obetydligt och proc. procoracoideus är ytterst svagt utvecklad.

Angulus coraco-secapularis utgör i flertalet fall omkring 70 grader.

Foramen triosseum är förträngdt, beroende äfven här på det kraftigt utvecklade acromion.

Sternum är försett med väl utvecklad, i spetsen gaffelformigt delad spina sterni externa, hvilken dock icke eger den prominens, vi iakttogo hos Osciniderna. Spinans främre kant är nedåt nästan rätlinigt öfvergående i den långt framspringande margo anterior eriste sterni. Den för öfrigt temligen låga bröstbenskammen företer en föga konvex margo longitudinalis. Spina sterni interna saknas, och sterni distala del, hvilkens margines laterales divergera ganska starkt bakåt, eger å hvar dera sidan om erista sterni tvenne incisurer, och det dervid uppkomna trabeculum mediale sträcker sig tydligt utifrån och framifrån inåt och bakåt och synes sålunda utgå från trabeculum laterale. Incisura medialis är derför också ofta djupare än incisura lateralis. — Processus sterno-coracoideus bär ända ut till apex proc. costales (undantag lyginæ). Bröstbenet
eger tvenne foramina pneumatica (om nemligen sådana äro för handen).

De mot hvarandra svarande ytorna i articulatio sterno-coracoidea tyckas tillåta (med undantag af Lynginae) relatift många och vidlyftiga exkursioner. Sulcus coracoialis är nemligen mycket grund och bred och eger endast i sitt midtplan en lätt konkavering. Crista articularis ossis coracoidei är i öfverensstämmelse härmed bred i sagittal diameter och företer endast i sitt midtplan en svag konvexitet. Så gestalta sig ledytorna företrädesvis i den mediali delen; i den laterala delen af samma led finna vi sulcus något djupare och motsvarande crista äfvenså något starkare konvex.

Familj. Pici angusticolles.

Det slägte och den art, som hit höra, nemligen Dryocopus martius L., eger, i likhet med flertalet öfriga Pici, ett sternum. som i längd öfverstiger den respektive coracoidallängden:

<table>
<thead>
<tr>
<th>Sternallängd</th>
<th>Coracoidallängd</th>
</tr>
</thead>
<tbody>
<tr>
<td>42</td>
<td>40</td>
</tr>
</tbody>
</table>

Höjden af crista sterni understiger rätt betydligt sterni halfva längd:

<table>
<thead>
<tr>
<th>Cristans höjd</th>
<th>Half sternallängd</th>
</tr>
</thead>
<tbody>
<tr>
<td>15</td>
<td>21</td>
</tr>
</tbody>
</table>

Sternalbredden understiger med några millimeter motsvarande sternallängd:

<table>
<thead>
<tr>
<th>Sternalbred</th>
<th>Sternallängd</th>
</tr>
</thead>
<tbody>
<tr>
<td>38</td>
<td>42</td>
</tr>
</tbody>
</table>

Djupet af incisura medialis är nära nog dubbelt så stort som det af incisura lateralis:

<table>
<thead>
<tr>
<th>Incisura med.</th>
<th>Inc. lat.</th>
<th>Sternallängd</th>
</tr>
</thead>
<tbody>
<tr>
<td>11</td>
<td>6</td>
<td>42</td>
</tr>
</tbody>
</table>

Familj. Pici securirostres.

Hithörande slägten, Tridactylia Steph., Dendrocopus Koch., Dendromus Mus. H., Hylocopus Mus. H. och Dendrocoptes Mus. H., skilja sig i någon mån från hvarandra med afseende på proportionerna mellan de skelettdelar vi behandla. Hos de slägten vi varit i tillfälle att närmare undersöka har sternallängden öfverstigit eller varit lika med den respektive coracoidallängden:
<table>
<thead>
<tr>
<th></th>
<th>sternallängd</th>
<th>coracoidallängd</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tridactylia</td>
<td>26</td>
<td>25</td>
</tr>
<tr>
<td>Dendrocopus</td>
<td>29</td>
<td>27</td>
</tr>
<tr>
<td>Hylocopus</td>
<td>17</td>
<td>17</td>
</tr>
</tbody>
</table>

Höjden af crista sternalis gent emot halfva sternallängden utgör:

<table>
<thead>
<tr>
<th></th>
<th>cristans höjd</th>
<th>half sternallängd</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tridactylia</td>
<td>10</td>
<td>13</td>
</tr>
<tr>
<td>Dendrocopus</td>
<td>11</td>
<td>14,5</td>
</tr>
<tr>
<td>Hylocopus</td>
<td>7</td>
<td>8,5</td>
</tr>
</tbody>
</table>

Sternalbredden understiger den respektive sternallängden:

<table>
<thead>
<tr>
<th></th>
<th>sternalbredd</th>
<th>sternallängd</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tridactylia</td>
<td>22</td>
<td>26</td>
</tr>
<tr>
<td>Dendrocopus</td>
<td>24</td>
<td>29</td>
</tr>
<tr>
<td>Hylocopus</td>
<td>15</td>
<td>17</td>
</tr>
</tbody>
</table>

Med afseende på förhållandet i djup mellan incisuræ medialis et lateralis, finna vi någon skiljaktighet mellan de undersökta slägtena:

<table>
<thead>
<tr>
<th></th>
<th>incisura med.</th>
<th>inc. lat.</th>
<th>sternallängd</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tridactylia</td>
<td>8</td>
<td>6,5</td>
<td>26</td>
</tr>
<tr>
<td>Dendrocopus</td>
<td>9</td>
<td>6</td>
<td>29</td>
</tr>
<tr>
<td>Hylocopus</td>
<td>5</td>
<td>7</td>
<td>17</td>
</tr>
</tbody>
</table>

Familj. Pici Ligonirostres.

Slägnet *Geicinus* Boie öfverensstämmer nära nog fullständigt med öfriga Pici. Sternum öfverstiger i längd något motsvarande coracoidallängd:

<table>
<thead>
<tr>
<th></th>
<th>sternallängd</th>
<th>coracoidallängd</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>35</td>
<td>34</td>
</tr>
</tbody>
</table>

Cristan är dock ovanligt låg; på samma gång som den företer en nästan fullkomligt rak margo longitudinalis:

<table>
<thead>
<tr>
<th></th>
<th>cristans höjd</th>
<th>half sternallängd</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>10</td>
<td>17,5</td>
</tr>
</tbody>
</table>

Sternalbredden utgör:

<table>
<thead>
<tr>
<th></th>
<th>sternalbredd</th>
<th>sternallängd</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>28</td>
<td>35</td>
</tr>
</tbody>
</table>

Djupet af incisura medialis är större än det af inc. lateralis:

<table>
<thead>
<tr>
<th></th>
<th>inc. med.</th>
<th>inc. lat.</th>
<th>sternallängd</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>9</td>
<td>6</td>
<td>35</td>
</tr>
</tbody>
</table>
Familj. Lynginæ.

Släaget *Lynx* L. tyckes med afseende på byggnaden af bröstben och skuldergördel stå Oscines närmare än någon annan åtminstone skandinavisk representant af de öfriga till Pici hörande familjerna. Bland utomskandinaviska former ansluter sig denna familj närmast till slägtena Rhamphastus. Psilopogon och andra dessa närstående. Men äfven med hän-syn till proportionerna nämnda skelettdelar emellan avviker lynx från ofvan beskrifna hackspettar. Så finna vi ett sternum, som i längd understiger den respektive coracoidallängden:

<table>
<thead>
<tr>
<th>sternallängd</th>
<th>coracoidallängd</th>
</tr>
</thead>
<tbody>
<tr>
<td>18</td>
<td>21</td>
</tr>
</tbody>
</table>

Cristans höjd utgör:

<table>
<thead>
<tr>
<th>cristans höjd</th>
<th>half sternallängd</th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td>9</td>
</tr>
</tbody>
</table>

Sternalbredden understiger motsvarande sternallängd:

<table>
<thead>
<tr>
<th>sternalbredd</th>
<th>sternallängd</th>
</tr>
</thead>
<tbody>
<tr>
<td>16</td>
<td>18</td>
</tr>
</tbody>
</table>

Jemförda med sternallängden, äro de respektive djupen af incisuræ sternales ovanligt stora:

<table>
<thead>
<tr>
<th>inc. med.</th>
<th>inc. lat.</th>
<th>sternallängd</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>8</td>
<td>18</td>
</tr>
</tbody>
</table>

Scapula är jemförelsevis lång och, i likhet med förhål-

Cohors III (Coccyges). (Tafl. II, fig. 6).

Hos gökfoglarna, hvilka i väsentlig mån skilja sig från föregående flock och bland utomskandinaviska former komma närmast familjen Centropidae, som icke torde sakna likhet med Coraciinæ bland Cœnomorphæ, iaktta vi en temligen lång och spetsigt utdragen *scapula*, hvilkens acromialutskott är svagare utvecklad än inom de grupper vi förut studerat och icke bildar någon utbredd triangulär yta för artikulationen.
med extremitas coracoidealís claviculæ. Till följd häraf företer förmen triosseum ett större lumen, än förhållandet var hos Oscines och Pici.

Angular coraco-scapularis utgör 75 å 80 grader.

Åfven här finna vi betingelser för ganska vidlyftiga exkursioner i sterno-coracoidealelden. Sulcus coracoidealís är nemligen jemförelsevis ganska grund, dock icke af sådan bredd, som vi iakttaga hos Pici, och den deremot svarande crista articularis äfvenså af föga höjd. Coracoidalfårans största djup ligger ungefär i dess midtpal, så äfven med cristans högsta resning.

Den enda familj, som inom denna Cohors tillhör den skandinaviska faunan, är
Familj. Cuculinae,

hvilken räknar endast ett slägte och en art, nemligen *Cuculus canorus* L. Sternallängden öfverstiger motsvarande coracoidal-längd:

<table>
<thead>
<tr>
<th>sternallängd</th>
<th>coracoidal-längd</th>
</tr>
</thead>
<tbody>
<tr>
<td>33</td>
<td>26</td>
</tr>
</tbody>
</table>

Sternalbredden är stor:

<table>
<thead>
<tr>
<th>sternalbredd</th>
<th>sternallängd</th>
</tr>
</thead>
<tbody>
<tr>
<td>31</td>
<td>33</td>
</tr>
</tbody>
</table>

Cristans maximihöjd utgör:

<table>
<thead>
<tr>
<th>cristans höjd</th>
<th>half sternallängd</th>
</tr>
</thead>
<tbody>
<tr>
<td>14</td>
<td>16,5</td>
</tr>
</tbody>
</table>

Djupet af incisura sternalis varierar något, men är aldrig stort:

<table>
<thead>
<tr>
<th>incisura</th>
<th>sternallängd</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>33</td>
</tr>
</tbody>
</table>

Cohors IV (Coenomorphæ). (Tafl. II, fig. 7.)

Scapula är spetsigt utdragen, af medellängd, bildande med sitt acromialutskott en medial, utbredd yta för förbindelsen med clavicula, och foramen triosseum är öppet.

Os coracoideum företer en väl utvecklad processus pro-coracoidens, med hvilkens ungefär halfva främre rand scapula står i förbindelse. Extremitas coracoidalis clavicula ledar dock icke mot nämnda process; ty denna senare skjuter med sin från scapula fria del in i ett plan, som ligger mellan acromion och os coracoideum. »Korpbenets« extremitas sternalis är starkt utbredd samt företer väl markerade lineae intermusculares. Proc. lateralis är bred och utdragen, i spetsen föga hakformigt böjd.

Sternum eger, i likhet med förhållandet hos Pici, på hvarandra sidan om den något höga crista sternalis tvenne incisurer, af hvilka dock den laterala är djupast. Dessutom löpa de båda trabecula nästan parallelt, utan någon synnerligen framträdande konvergans framåt. Spina sterni interna saknas; spina sterni externa är deremot temligen väl utvecklad, icke gaffelformigt delad och försedd med ett tydligt foramen pneumaticum.

Sterno-coracoidalleden ha vi ej varit i tillfälle att särskilt studera.

Även inom denna Cohors ha vi endast en skandinavisk familj och ett slägte:

Familjen Coraciinae.

Coracias garrulus L. företer ett sternum, som i längd öfverstiger den respektive coracoidallängden:

<table>
<thead>
<tr>
<th>sternallängd</th>
<th>coracoidallängd</th>
</tr>
</thead>
<tbody>
<tr>
<td>32</td>
<td>28</td>
</tr>
</tbody>
</table>

Cristans maximihöjd utgör:

<table>
<thead>
<tr>
<th>cristans höjd</th>
<th>half sternallängd</th>
</tr>
</thead>
<tbody>
<tr>
<td>12</td>
<td>16</td>
</tr>
</tbody>
</table>

Sterni bredd är stor:

<table>
<thead>
<tr>
<th>sternallbredd</th>
<th>sternallängd</th>
</tr>
</thead>
<tbody>
<tr>
<td>30</td>
<td>32</td>
</tr>
</tbody>
</table>

Djupen af incisuræ mediales et laterales äro:

<table>
<thead>
<tr>
<th>inc. med.</th>
<th>inc. lat.</th>
<th>sternallängd</th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td>12</td>
<td>32</td>
</tr>
</tbody>
</table>

Cohors V (Ampligulares).

De två europeiska familjer, som äro inordnade under denna afdelning af Volucres, förete sinsemellan så få gemensamma detaljer i byggnaden af bröstben och skuldergördel, att de lämpligast beskrivvas hvar och en för sig. — Ehuru
egentligen något på sidan om ämnet för våra för handen varande studier, vilja vi dock påpeka den nära nog fullständiga öfverensstämmlsen i ifrågavarande skelettutvänds struktur och proportioner mellan hithörande familj Cypselidæ och den utomeuropeiska flocken Longilingæ, — detta i samband med den stora strukturskilnaden Caprimulginae och Cypselidæ emellan.

Familj. Caprimulginae. (Taf. II, fig. 8.)

Det enda slägte af denna familj, som tillhör den skandinaviska faunan, nemligen Caprimulgus L., företer ett sternum, som i längd öfverstiger den respektive coracoidallängden:

<table>
<thead>
<tr>
<th>sternallängd</th>
<th>coracoidallängd</th>
</tr>
</thead>
<tbody>
<tr>
<td>26</td>
<td>19</td>
</tr>
</tbody>
</table>

Cristans höjd är stor, i det att den uppnår motsvarande halfva sternallängd:

<table>
<thead>
<tr>
<th>cristans höjd</th>
<th>half sternallängd</th>
</tr>
</thead>
<tbody>
<tr>
<td>13</td>
<td>13</td>
</tr>
</tbody>
</table>

Sternalbredden understiger endast obetydligt sternallängden:

<table>
<thead>
<tr>
<th>sternalbredd</th>
<th>sternallängd</th>
</tr>
</thead>
<tbody>
<tr>
<td>25</td>
<td>26</td>
</tr>
</tbody>
</table>

Den breda incisura sternalis eger ett djup af:

<table>
<thead>
<tr>
<th>incisurens djup</th>
<th>incisurens bredd</th>
<th>sternallängd</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>9</td>
<td>26</td>
</tr>
</tbody>
</table>

De proportioner vi ofvan angifvit påminna i någon mån om dem vi funno beträffande familjen Cuculinæ, och spåra vi derför i den allmänna anläggningen af brösten och skuldergördel ej så få likheter mellan dessa båda familjer, om också enskilda strukturdetaljer skilja dem ganska väsentligt från varandra.

Så företer Scapula en temligen bred distal del, hvilken är mer eller mindre trubbetsad.

Os coracoideum eger en ytterst obetydligt utvecklad processus procoracoideus och en tillplattad extremitas sternalis, hvilken är försedd med en tydlig proc. lateralis.

Angulus coraco-secapularis är stor (ungefär 80 grader).

Clavicula, hvars periferi visserligen ej bildar en så skarp kurva som inom föregående flock, men dock eger sin medel-
punct något ofvanför proc. lateralis ossis coracoidei, är smal, i sin coracoidal del föga tillplattad samt leder mot acromion och acrocoracoideum, hvars nedre mediala rand den till en del omfattar. Proc. episternalis furculae är svagt utvecklad och bakåt riktad samt stöter direkt till den övre randen af den något framspringande apex crista.

Sternum är kort och bredt samt eger en hög crista, hvilkens margo longitudinalis är starkt konvex och hvilkens apex är något framåtsgjutande och stöter med sin övre rand direkt till proc. episternalis furculae. Å hvardera sidan om cristan finns en bred incisura sternalis. Proc. sterno-coracoideus är obetydligt utvecklad, och såväl spina sterni externa som interna saknas. I stället för denna senare iakttaga vi tvenne tubercula lab. inf.

Med afseende på de mot hvarandra svarande ytorna i articulatio sterno-coracoidea tyckes familjen Caprimulginae skilja sig från öfriga Volucres, i det att den i detta hänseende företer till hufvudsaklig del de karakterer, hvilka vi framhållo, då vi lennade en allmän beskrifning på sternum och os coracoideum. Så visar sig crista articularis vara i sin mediala externa del konvex, i sin interna konkav och motsvarande sulcus i sin mediala externa del konkav, i sin interna konvex, och bildar sålunda sistnämnda yta en S-förmig krökning. I den laterala delen är cristan konvex och sulcus konkav.

Familj. Cypsolidæ. (Tall. III, fig. 1.)

Det hithörande skandinaviska släktet Cypselus illig. företer en byggnad af bröstben och skuldergördel, som i många hänseenden afviker från den vi iakttago hos familjen Caprimulgine, och som också på samma gång visar sig ega de gynsammaste betingelser för en kraftig och uthållig flygt. — Sternallängden öfverstiger betydligt motsvarande coracoidal-längd:

<table>
<thead>
<tr>
<th>sternallängd</th>
<th>coracoidal-längd</th>
</tr>
</thead>
<tbody>
<tr>
<td>25</td>
<td>13.</td>
</tr>
</tbody>
</table>

Crista sterni eger en ovanligt hög resning:

<table>
<thead>
<tr>
<th>cristans höjd</th>
<th>half sternallängd</th>
</tr>
</thead>
<tbody>
<tr>
<td>15</td>
<td>12,5</td>
</tr>
</tbody>
</table>

sålunda ej så oansenligt öfverstigande halfva sternallängden.
Sternalbredden utgör:

<table>
<thead>
<tr>
<th>sternalbredd</th>
<th>sternallängd</th>
</tr>
</thead>
<tbody>
<tr>
<td>19</td>
<td>25</td>
</tr>
</tbody>
</table>

Scapula är spetsigt utdragen och blir plötsligt tillplattad i sin distala tredjedel.

Os coracoideum är, såsom vi ofvan sett, i förhållande till sternallängden mycket kort; det är dessutom kraftigt bygdt, med oansenlig proc. procoracoideus och en extremitas sternalis, som är jemförelsevis föga tillplattad. Proc. lateralis är svagt utvecklad. Omedelbart bakom symphysis coraco-scapularis iakttaga vi ett foramen supracoracoideum.

Angulus coraco-secpularis utgör ungefär 75 grader.

Den periferi clavicle företer en mycket skarp kurva, i det att medelpunkten ligger ungefär vid midten av os coracoideum. Nyckelbenet är för öfrigt kraftigt bygdt, eger ej någon utplattad extremitas coracoidalis, men fyllar med sin mot acrocoracoideum stötande yta denna senare bildnings undre mediala rand, och är derjemte förenad med acromion. Furcula företer en föga utbildad proc. episternalis. — Hos några exemplar af hithörande släkte slägte hafta vi iakttagit de båda clavicularae fria vis-à-vis varandra, i det att en menisk varit inskjuten mellan deras sternala ändar, med hvilken dessa stått i en syndesmotisk förbindelse.

Hvad slutligen de i articulatio sterno-coracoidea ingående ledytorna beträffar, finna vi här betingelser för stora utslag och olikartade exkursioner bättre uttalade än inom någon annan till Volucrees hörande familj. Coracoids ledyta är nemligen i sin mediala del icke konvex, utan fast mera svagt konkav och temligen bred, och motsvarande yta å sternum något konvex. I den laterala delen åter är crista articularis ossis coracoidei något konvex och motsvarande sulcus sternalis konkav.
Cohors VII (Volucres syndactylæ). (Tafl. III, fig. 3.)

Af hithörande tvenne europeiska familjer, nemligen Meropinæ och Alcedininae, ha vi varit i tillfälle att undersöka endast den förstnämnda. — De strukturer vi emellertid finna inom denna erinra till en del om Pici, till en del äfven om flocken Coenomorphæ.

Scapula är spetsigt utdragen, och foramen triosseum något förträngdt genom den temligen breda proc. acromialis.

Os coracoideum eger en väl utvecklad processus procoracoidens samt föreger vid sin utplattade extremitas sternalis en tydlig linea intermuscularis interna.

Angulus coraco-scapularis är något öfver 70 grader.

Articulatio sterno-coracoidea ha vi ej varit i tillfälle att närmare studera.

Familj. Meropinæ.

Den skandinaviska representanten för slägret Merops L., nemligen M. apiaster L., eger ett sternum, som i längd ej obetydligt öfverträffar motsvarande coracoallängd:

sternallängd coracoallängd
30 21.
Cristans höjd när ej halfva sternallängden:

cristans höjd half sternallängd
13 15.

Sternalbredden utgör:

sternalbredd sternallängd
19 30.

Incisurerna förete ganska stora djup:

inc. med. inc. lat. sternallängd
10 15 30.

Cohors VIII (Peristeroidae). (Tafl. III, fig. 2.)

Denna flocks representanter erbjuder en helt ny typ, i få afseenden överensstämmande med de öfriga vi iakttagit inom Voluceres. Sins emellan äro dessutom hithörande slägten till alla delar lika och bilda sådana en väl afgränsad grupp för sig. Åt ett håll lemnar dock duffoglarnes så karakteristiska struktur ett tillfälle för många jemförelser, och detta är gent emot hönsfoglarne, såsom de der inledas af familjen Pteroclinae. Överensstämmelserna i struktur mellan representanterna för flocken Peristeroidae och familjen Pteroclinae äro nemligen så påtagliga, på samma gång som vi iakttagit rätt stora och många differenser mellan denna sist nämnda familj och öfriga hönsfoglar — hvilka för öfrigt såsom duffoglarna bilda en synnerligen väl afrundad grupp och sins emellan sådana äfven förete de mest genomgående likheter —, att i detta afseende åtminstone knappast tyckes finnas något tvifvel om den plats familjen Pteroclinae bör i systemet intaga (se Tafl. V, fig. 2). Vi vilja emellertid ingalunda förneka, att vi t. o. m. betrattande skuldergördel och bröstben kunna spåra en och annan detalj, som tyckes tyda på någon fränskap även med hönsfoglarne. Derför torde också Pterocline, åtminstone med afseende på de skelettdelel vi behandla, helst böra betrakta såsom en förmedlande form mellan flocken Peristeroidae och Gallinæ. I det Sundevallska systemet äro dock, såsom bekant, Accipitres inskjutna mellan Voluceres och Gallinæ.

Scapula är spetsigt utdragen, i sin distala del något tillplattad, och foramen triosseum är öppet.
Os coracoideum eger en väl utvecklad processus procoracoideus, hvilkens bakre rand är mer eller mindre tydligt ur nupen, och en tilltryckt extremitas sternalis med något ut bredd proc. lateralis.

Angulus coraco-scapularis utgör ungefär 70 grader.

Clavicula är kort och svag, nästan rak, utefter hela sin längd nära nog jemnbred, dock något bredare mot den coracoidala änden, genom hvilken den står i förbindelse med acromion och acrocoracoideum, hvars nedre och mediala rand den till en del omfattar, under det att proc. procoracoideus börjer sig lateralt om clavicula.

De mot hvarandra svarande ytorna i articulatio sterno-coracoidea äro temligen flacka, ej synnerligen djupt inkilade i hvarandra — såsom förhållandet för öfrigt tyckes vara inom Volucres. Crista articularis ossis coracoidei är i sin mediala del bred och något konvex och motsvarande sulus affens bred och något konkav. I den laterala delen af samma led äro de mot hvarandra svarande ytorna, såsom nära nog alltid, smalare.

Familj. Columbinae.

Hithörande slägten, Columba L. och Turtur Selby, äro med afseende på sin struktur och inbördes proportionalitet nästan fullkomligt öfverensstämmende. Sternallängden är nära nog dubbelt så stor som motsvarande coracoidallängd:

<table>
<thead>
<tr>
<th></th>
<th>sternallängd</th>
<th>coracoidallängd</th>
</tr>
</thead>
<tbody>
<tr>
<td>Columba........</td>
<td>63</td>
<td>35</td>
</tr>
<tr>
<td>Turtur..........</td>
<td>47</td>
<td>25.</td>
</tr>
</tbody>
</table>

Cristans maximihöjd utgör:

<table>
<thead>
<tr>
<th></th>
<th>cristans höjd</th>
<th>half sternallängd</th>
</tr>
</thead>
<tbody>
<tr>
<td>Columba........</td>
<td>28</td>
<td>31,5</td>
</tr>
<tr>
<td>Turtur..........</td>
<td>20</td>
<td>23,5</td>
</tr>
</tbody>
</table>
Bredden af sternum är:

<table>
<thead>
<tr>
<th></th>
<th>sternalbredd</th>
<th>sternallängd</th>
</tr>
</thead>
<tbody>
<tr>
<td>Columba</td>
<td>40</td>
<td>63</td>
</tr>
<tr>
<td>Turtur</td>
<td>30</td>
<td>47</td>
</tr>
</tbody>
</table>

Längden af incisura lateralis är lika med eller öfverstiger dubbla längden af fenestra medialis:

<table>
<thead>
<tr>
<th></th>
<th>fen. med.</th>
<th>inc. lat.</th>
<th>sternallängd</th>
</tr>
</thead>
<tbody>
<tr>
<td>Columba</td>
<td>12</td>
<td>24</td>
<td>63</td>
</tr>
<tr>
<td>Turtur</td>
<td>6</td>
<td>18</td>
<td>47</td>
</tr>
</tbody>
</table>

Sammanfattning.

Vid en allmän blick på fogelsystemets andra ordning gör sig framför allt gällande den mångfald af främst skilda typer, som der inom rymmas. Något egentligt grupperande med hänsyn till de skelettdelar vi studera af hithörande familjer eller slägten låter sig derför knappast göra. Vi kunna emellertid icke undgå att finna uti den allmänna anläggningen af bröstben och skuldergördel en viss öfverensstämmelse mellan de till sin struktur dock jemförelsevis homogena Pici på den ena sidan och Volucres syndactyle och Coenomorphe på den andra, om vi och på samma gång måste medgiva, att dessa i flera hänseenden äro hvarandra ganska olika. — Den tanke, att ännu icke en till alla delar fullt tillförsstående gruppering af hithörande familjer blifvit funnen, våga vi emellertid uttala på den grund, att vi inom samma underafdelningar finna typer, som är hvarandra så pass vidt skilda, som förbållandet är t. ex. inom flocken Ampligulares mellan der inrymda Caprimulginae och Cypselidae; synnerligast som dessa skilda former icke stå ensamma, icke isolerade, utan ega, åtminstone hvad den ena beträffar, sina nära nog i alla detaljer öfverensstämmande samslägtingar inom andra grupper, om ock dessa senare icke skulle vara representerade inom det europeiska området. För så vidt dessutom denna andra ordning skall bibehållas sådan den är, med alla de familjer den nu innesluter, tyckes dock den så påtagliga likheten i struktur mellan de egentliga duftagrarna och familjen Pteroclinæ inom hönsfoglarna fordra en annan gruppering af de närmast efterföljande ordningarna Accipitres och Rasores eller Gallinæ sins emellan. Erinra vi oss för öfrigt
andra moment än dessa uteslutande strukturer hos represen-
tanterna för familjen Pterocline, så känna vi bland mycket
annat, hurusom åtminstone formen af hithörande ägg är den
samma som den för duffoglarna karakteristiska, om och sågär
är en annan. Oss synes emellertid, som om duffoglarna jemte
familjen Pterocline vore värda en vida sjelfständigare plats
inom systemet.

Hvad episternalapparaten beträffar, tyckes den hos fler-
talet hithörande grupper icke till någon annan af sina delar
undergå någon egentligt ossifiering, utan vara af uteslutande
membranos beskaffenhet. Hos Pici synes det dock, som om
en större eller mindre del af lamina mediana öfvergått i
ossöst tillstånd, men dervid icke, såsom förhållandet var hos
Osciniderna, direkt förenat sig med furcula till bildande af
dess processus episternalis, utan sammanflutit med margo
anterior crista sternalis och såmedelst åstadkommit dennes
för Pici karakteristiska framspringande utseende. Hos Cucu-
ilnæ och i någon mindre män är hos Caprimulginae åter
iakttaga vi en proc. episternalis, hvilken markerar sig genom
e en form och riktning, som hittills varit oss främmande.
Processen synes i dessa fall utgöra en partiel förbening af den
företrädesvis nedre förstärkningsranden i lamina mediana, liga-
mentum crista-claviculare.

Hos Pici och Volucres syndaetyle finna vi vidare den
för första ordningens representanter så genomgående karakteri-
stiska furcularadelningen af spina sterni externa, och synes den
äfven hos Pici stå i samband med samma förstärkning af
episternalapparaten, som vi iakttago hos Oscines, nemligen
ligamenta sternoveroacoraceidea. Hos Volucres syndaetyle
hafva vi iakttagit ett ligamentum sternoprocoracoeideum. Hos
andra hithörande familjer, såsom hos Cuculinæ, hos Cypselidæ
och hos Columbinæ, der vi äro i tillfälle att se en propor-
tionelt mer eller mindre stark utbildning af spina sterni in-
terna, finna vi denna utveckling stå i korrelation till andra
accessoriska element i membrana sternocoraco-claviculareis, så-
som hos Cuculinæ till ligamentum sternoprocoracoeideum,
hos de båda andra till ligamentum sternoprocoracoeideum lon-
gum, hvilken bildning sträcker sig från sternum till medial-
randen af den mellersta eller främre delen af os coracoideum.
— Hos de representanter för denna ordning, der vi varit i
tillfälle att iakttaga en väl utvecklad processus procoracoides,
finna vi detta förhållande — såsom nära nog alltid — derjemte stå i samband med ett kraftigare ligamentum acrocoraco-procoracoideum, hvilket understundom kan vara ossifieradt, hvarvid i så fall proc. procoracoideus och acrocoracoideum direkt sammanhänga med hvarandra, bildande en fullständigt förbenad canalis supracoracoideus, — såsom vi äfven sågo förhållandet kunna vara med Upupinae.
ORDNING III.

Accipitres (Tafl. III [figg. 4—6] och IV).

Visserligen erbjuder flertalet af de slägten, som hit höra, sims emellan stora skiljaktigheter, så att vi ej heller inom denna ordning skulle kunna anse oss vara i tillfälle att uppställa några för alla roffoglar gemensamma karakterer; men de respektive afdelningarnas representanter förete dock så många ömsesidiga likheter till sina strukturer, att hithörande grupper blifva, åfven med afseende på de detaljer af den anatomiska byggnaden vi studera, ganska distinkt afgränsade. Framför allt gäller detta med afseende på förhållandet mellan ordningens båda flockar, Nyctharpages och Hemeroharpages. Inom den första äro emellertid öfverensstämmelserna nära nog fullständiga, inom den senare åter spåra vi icke så få skiljaktigheter i detaljer mellan hithörande familjer, om öck en gemensam allmän anläggning af bröstben och skuldergördel otvetydigt tyckes vara för handen. Med hänsyn specielt till den sålunda påtagliga fränskapen mellan de familjer, som tillhöra den andra flocken, och den genomgående likheten i struktur, som karakterisera den första, sakna vi derför icke hvarje skäl för det påståendet, att tredje ordningen med sina båda cohortes utgör en väl afgränsad och bestämd afdelning inom fogelsystemet, om också alla typer äro långt ifrån så homogena, som vi sågo förhållandet vara inom Oscines.

I samband med specielt den i allmänhet kraftigt utvecklade flyg Muskulaturen, som karakteriserar denna ordnings representanter, finna vi också, synnerligast inom andra flocken, mindre inom den första, en deraf resulterande mäktig byggnad af bröstben och skuldergördel och af denna senare en clavicula, som städse står i ledande förbindelse med acrocoracoideum.
Cohors I (Nyctharpages). (Tafl. III, figg. 4 och 5.)

De uggleartade roffoglarnailda till sin struktur en mycket homogen och från alla andra afdelningar inom fogelsystemet väl afgränsad grupp. Så ega de en scapula, som är temligen bred, med tillspetsad apex, och foramen triosityum är öppet.

Angulus coraco-scapularis är ovanligt stor — omkring 85 grader.

Clavicula är nästan rak samt synnerligast mot den distala delen tunn och svag. Utefter hela sin längd är den mer eller mindre tillplattad inifrån och utåt och saknar vid sin sternala del, — som hos de mindre formerna ej ens blifvit ossifierad —, fullständigt proc. episternalis furculae. Den jemförelsevis bredare extremitas coracoidalis står i förbindelse med acrocoracoid, acromion och proc. procoracoideus. Den mot acrocoracoid ledande ytan omfattar mer eller mindre den nedre mediala randen af denna bildning.

Sternum är proportionelt kort och bredd med nästan parallelt löpande margines laterales och eger i allmänhet en, synnerligast hos de mindre formerna, temligen låg crista med föga konvex margo longitudinalis. Spina sterni externa är ganska svag, vettande framåt och något nedåt, och kan hos de mindre formerna fullständigt saknas. Spina sterni interna saknas. Den distala delen företer oftast på hverandra sidan om cristan tvenne incisurer, af hvilka den laterala eger det största djupet.

Hvad beträffar de mot hvarandra svarande ytorna i *articulatio sterno-coracoidea*, förete de båda en uppfirån och in-
ifrån, nedåt och utåt löpande S-formig krökning. I den laterala delen af leden tränger dock den externa facetten af crista coracoidea något djupare ned i motsvarande sulcus, än hvad förhållandet är i den mediala delen.

Familj. Glaucinæ.

Glaux flammea L. afviker till sin struktur från de allmänna karaktererna för Cohors I deruti, att sternum vid sin distala del eger endast en incisur, hvilken är triangulär och jemförelsevis grund (se Tafl. III, fig. 4 a).

Sternallängden öfverstiger motsvarande coracidallängd:

<table>
<thead>
<tr>
<th>sternallängd</th>
<th>coracidallängd</th>
</tr>
</thead>
<tbody>
<tr>
<td>40</td>
<td>33</td>
</tr>
</tbody>
</table>

Cristans höjd understiger betydligt den respektive halfva sternallängden:

<table>
<thead>
<tr>
<th>cristans höjd</th>
<th>half sternallängd</th>
</tr>
</thead>
<tbody>
<tr>
<td>11</td>
<td>20</td>
</tr>
</tbody>
</table>

Sternalbredden utgör:

<table>
<thead>
<tr>
<th>sternalbredd</th>
<th>sternallängd</th>
</tr>
</thead>
<tbody>
<tr>
<td>27</td>
<td>40</td>
</tr>
</tbody>
</table>

Djupet af den här befintliga enda incisuren är:

<table>
<thead>
<tr>
<th>innisura</th>
<th>sternallängd</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>40</td>
</tr>
</tbody>
</table>

Familj. Ululinae.

Liksom inom alla öfriga till Cohors I hörande familjer, finna vi afven hos denna familjs slägten, nemligen Asio Briss., Brachyotus Gould. och Utula Cuv., en sternallängd, som öfverträffar motsvarande coracidallängd:

<table>
<thead>
<tr>
<th>sternallängd</th>
<th>coracidallängd</th>
</tr>
</thead>
<tbody>
<tr>
<td>Asio</td>
<td>37</td>
</tr>
<tr>
<td>Brachyotus</td>
<td>45</td>
</tr>
<tr>
<td>Utula uralensis</td>
<td>54</td>
</tr>
<tr>
<td>» lapponica</td>
<td>62</td>
</tr>
<tr>
<td>» aluco</td>
<td>42</td>
</tr>
</tbody>
</table>

Höjden af crista sterni utgör:

<table>
<thead>
<tr>
<th>cristans höjd</th>
<th>half sternallängd</th>
</tr>
</thead>
<tbody>
<tr>
<td>Asio</td>
<td>11</td>
</tr>
<tr>
<td>Brachyotus</td>
<td>16</td>
</tr>
</tbody>
</table>
cristans höjd half sternallängd

Ulula uralensis........ 16 27
» lapponica........... 18 31
» aluco 13 21.

Vi finna af ofvanstående siffror, hurusom Brachyotus före-
ter den proportionelt högsta cristan. Denna margo longitudi-inality är derjemte skarpare konvex, än hos alla öfriga natt-
roffoglars. Vi veta också, hurusom åtminstone Br. accipitrinus,
den om hvilken mätten gälla, visar sig ega en flygformäga,
som ganska väsentligt öfverträffar öfriga samslägtingars.

Sternalbredden utgör:

<table>
<thead>
<tr>
<th></th>
<th>sternallängd</th>
</tr>
</thead>
<tbody>
<tr>
<td>Asio</td>
<td>27</td>
</tr>
<tr>
<td>Brachyotus</td>
<td>28</td>
</tr>
<tr>
<td>Ulula uralensis</td>
<td>35</td>
</tr>
<tr>
<td>» lapponica</td>
<td>36</td>
</tr>
<tr>
<td>» aluco</td>
<td>31</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>inc. med.</th>
<th>inc. lat.</th>
<th>sternallängd</th>
</tr>
</thead>
<tbody>
<tr>
<td>Asio</td>
<td>6</td>
<td>11</td>
<td>37</td>
</tr>
<tr>
<td>Brachyotus</td>
<td>6</td>
<td>9</td>
<td>45</td>
</tr>
<tr>
<td>Ulula uralensis</td>
<td>10</td>
<td>18</td>
<td>54</td>
</tr>
<tr>
<td>» lapponica</td>
<td>13</td>
<td>20</td>
<td>62</td>
</tr>
<tr>
<td>» aluco</td>
<td>7</td>
<td>15</td>
<td>42</td>
</tr>
</tbody>
</table>

Djupen af respektive incisurer äro:

Familj. Buboninæ.

De båda hithörande skandinaviska slägtena, nemligen *Leuchybris Sundev.* och *Bubo Dum.*, ega de största represen-
tanterna inom de uggleartade roffoglarnes grupp. — Sternal-
och coracoidallängden utgöra:

<table>
<thead>
<tr>
<th></th>
<th>coracoidallängd</th>
</tr>
</thead>
<tbody>
<tr>
<td>Leuchybris</td>
<td>77</td>
</tr>
<tr>
<td>Bubo</td>
<td>78</td>
</tr>
</tbody>
</table>

Maximihöjden af crista sterni utgör:

<table>
<thead>
<tr>
<th></th>
<th>half sternallängd</th>
</tr>
</thead>
<tbody>
<tr>
<td>Leuchybris</td>
<td>28</td>
</tr>
<tr>
<td>Bubo</td>
<td>28</td>
</tr>
</tbody>
</table>

Sternalbredden är:

<table>
<thead>
<tr>
<th></th>
<th>sternallängd</th>
</tr>
</thead>
<tbody>
<tr>
<td>Leuchybris</td>
<td>53</td>
</tr>
<tr>
<td>Bubo</td>
<td>50</td>
</tr>
</tbody>
</table>
Djupen af de båda incisurerna äro:

<table>
<thead>
<tr>
<th>Art</th>
<th>inc. med.</th>
<th>inc. lat.</th>
<th>sternallängd</th>
</tr>
</thead>
<tbody>
<tr>
<td>Leuchybris</td>
<td>6</td>
<td>20</td>
<td>77</td>
</tr>
<tr>
<td>Bubo</td>
<td>7</td>
<td>20</td>
<td>78</td>
</tr>
</tbody>
</table>

Margo posterior företer hos Leuchybris en intrathoracalt sedt ganska skarp, framåt konvex konfiguration (se Tafl. III, fig. 4 b), då den åter hos Bubo närmare sig mera en rät linie. — Detta har till följd att, ehuru djupen af de respektive incisuræ laterales öfverensstämma, längden af trabecula lateralia dock är ganska olika hos de båda slägtena. Så utgör densamma hos Leuchybris 29, då den hos Bubo endast är 23 mm.

Familj. Noctuinae.

De egentligen skandinaviska slägten, som tillhör denna familj, nemligen *Nyctale* Brehm, *Glaucidium* Boie och *Nycthierax* Sundev., förete alla en clavicula, som vid sin extremitas sternalis är synnerligen ofullständigt utvecklad; oftast har den nemligen i denna del ej blifvit ossifierad. — Proportionerna af de skelettdelar vi behandla variera något mellan hithörande slägten; så företer sternallängden vis-à-vis coracoïdallängden följande värden:

<table>
<thead>
<tr>
<th>Art</th>
<th>sternallängd</th>
<th>coracoïdallängd</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nyctale</td>
<td>25</td>
<td>22</td>
</tr>
<tr>
<td>Glaucidium</td>
<td>21</td>
<td>22</td>
</tr>
<tr>
<td>Nychtierax</td>
<td>39</td>
<td>34</td>
</tr>
</tbody>
</table>

Crista sterni eger en höjd af:

<table>
<thead>
<tr>
<th>Art</th>
<th>cristans höjd</th>
<th>half sternallängd</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nyctale</td>
<td>8</td>
<td>12,5</td>
</tr>
<tr>
<td>Glaucidium</td>
<td>6</td>
<td>10,5</td>
</tr>
<tr>
<td>Nychtierax</td>
<td>11</td>
<td>19,5</td>
</tr>
</tbody>
</table>

Sternalbredden utgör:

<table>
<thead>
<tr>
<th>Art</th>
<th>sternalbredd</th>
<th>sternallängd</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nyctale</td>
<td>20</td>
<td>25</td>
</tr>
<tr>
<td>Glaucidium</td>
<td>16</td>
<td>21</td>
</tr>
<tr>
<td>Nychtierax</td>
<td>29</td>
<td>39</td>
</tr>
</tbody>
</table>

Djupen af incisurerna förete slutligen följande värden:

<table>
<thead>
<tr>
<th>Art</th>
<th>inc. med.</th>
<th>inc. lat.</th>
<th>sternallängd</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nyctale</td>
<td>6</td>
<td>11</td>
<td>25</td>
</tr>
<tr>
<td>Glaucidium</td>
<td>4</td>
<td>11</td>
<td>21</td>
</tr>
<tr>
<td>Nychtierax</td>
<td>5</td>
<td>15</td>
<td>39</td>
</tr>
</tbody>
</table>
Cohors II. (Hemeroharpages.) (Tafl. III fig. 6 och IV.)

Denna flocks representanter äro med afseende på sin struktur väl afgränsade från föregående cohorts familjer och äfven från alla öfriga grupper inom fogelsystemet. De ega uti sin allmänna anläggning mycket, som binder dem samman till ett sjelfständigt och afrundadt helt, om vi ock på samma gång äro i tillsfälle att iakttaga ganska stora differenser en del slägten emellan, hvilka gifva oss en osökt anledning att upp dela Hemeroharpages i vissa bestämda grupper — dock icke till alla delar jemförliga med de familjer, hvaruti flocken hittills blifvit indelad.

Scapula är kraftigt bygd, spetsigt utdragen och med oftast skarpt framträdande muskulära ursprungs- och insertionsfacetter.

Os coracoideum är starkt utvecklad, mer eller mindre bredt och kort samt med tydlig linea intermuscularis externa.

Angulus coraco-scapularis utgör omkring 70 grader.

Clavicula, som städse står i ledande förbindelse med acro-coracoideum och sålunda med sin utbredda extremitas coracoidealis omfattar dettas nedre, mediala rand, är af en ovanligt kraftig struktur och bildar en för flertalet af denna flocks familjer karakteristiskt skarp kurva. Processus episternalis saknas aldrig fullständigt (utom möjliga hos Falconinae) och vetter uppåt mot spina sterni externa.

Sterni margines laterales löpa nära nog aldrig fullkomligt parallellt med hvarandra, utan divergera eller (någon gång) konvergera bakåt. Den distala delen är på hvarandra sidan om den starka, proportionelt mer eller mindre höga (eller låga) cristan, — hvilken för öfrigt i flertalet fall eger en tem ligen starkt konvex margo longitudinalis —, antingen fullständigt hel eller ock försett med en fenestra; endast hos ett slägte (Pandion) är en incisura konstant. Spina sterni externa finnes, men är hos olika slägten underkastad rätt många vexlingar såväl med afseende på form som riktning. Åfven en spina steril interna gifves i några fall.

De ledande ytorna i *articulatio sterno-coracoidea* förete äfven här i sin mediala del en S-formig kröknig, men denna sträcker sig, med få undantag, mera i de respektive benens transversela än sagittala plan.
Familj. Asturinæ. (Tafl. III fig. 6 och IV figg. 1 och 2.)

Scapula är svärdformig och spetsigt utdragen.

Os coracoideum, hvilket är jemförelsevis smalt, eger en svagt utvecklad processus procoracoideus, som till obetydlig del står i kontakt med acromion och icke när fram till extremitas coracoidalis claviculae. Å margo medialis iakttages en grund, mer eller mindre bred incisur eller ett foramen, och processus lateralis är proportionelt temligen långt utdragen.

Slägtena *Nisus* Cuv. och *Astur* Lacep. förete stora öfverensstämnelser (se Tafl. III fig. 6) såväl med afseende på strukturen som proportionerna af bröstben och skuldergördel:

<table>
<thead>
<tr>
<th></th>
<th>sternallängd</th>
<th>coracoidallängd</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nisus</td>
<td>48</td>
<td>30</td>
</tr>
<tr>
<td>Astur</td>
<td>76</td>
<td>47</td>
</tr>
</tbody>
</table>

Cristan, hvilken när sin högsta resning bakom den något framskjutande apex och företer en tydlig linea interpectoralis, eger en höjd af:

<table>
<thead>
<tr>
<th></th>
<th>cristans höjd</th>
<th>half sternallängd</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nisus</td>
<td>16</td>
<td>24</td>
</tr>
<tr>
<td>Astur</td>
<td>23</td>
<td>38</td>
</tr>
</tbody>
</table>

Sternalbredden utgör:

<table>
<thead>
<tr>
<th></th>
<th>sternalbred</th>
<th>sternallängd</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nisus</td>
<td>28</td>
<td>48</td>
</tr>
<tr>
<td>Astur</td>
<td>44</td>
<td>76</td>
</tr>
</tbody>
</table>

Scapula eger å sin facies interna strax ofvan symphysis coraco-sepularis ett foramen pneumaticum. Sterni spina externa är utdragen, rak och spetsig samt något nedåt böjd, och bröstbenets distala del företer en fenestra, hvilken är oval och sträcker sig med sin längdsaxel framifrån och lateralt bakåt och medialt. Coracoids mediala incisur saknas nästan fullständigt.

Hos *Circus* Lacep., *Buteo* Cuv. och *Archibuteo* Br. (se Tafl. IV figg. 1 och 2) finna vi sternallängden utgöra vis-à-vis coracoidallängden:

<table>
<thead>
<tr>
<th></th>
<th>sternallängd</th>
<th>coracoidallängd</th>
</tr>
</thead>
<tbody>
<tr>
<td>Circus</td>
<td>63</td>
<td>40</td>
</tr>
<tr>
<td>Buteo</td>
<td>58</td>
<td>40</td>
</tr>
<tr>
<td>Archibuteo</td>
<td>68</td>
<td>44</td>
</tr>
</tbody>
</table>

Cristan, hvilken eger sin högsta resning nära nog vid apex och företer en jemförelsevis mindre tydlig linea interpectoralis, når en höjd af endast:

<table>
<thead>
<tr>
<th></th>
<th>cristans höjd</th>
<th>half sternallängd</th>
</tr>
</thead>
<tbody>
<tr>
<td>Circus</td>
<td>16</td>
<td>31,5</td>
</tr>
<tr>
<td>Buteo</td>
<td>16</td>
<td>29</td>
</tr>
<tr>
<td>Archibuteo</td>
<td>18</td>
<td>34</td>
</tr>
</tbody>
</table>
EMIL HOLMGREN, DE SKANDINAVISKA FOGLARNES OSTEOLOGI.

Sternalbredden utgör:

<table>
<thead>
<tr>
<th></th>
<th>sternalbredd</th>
<th>sternallängd</th>
</tr>
</thead>
<tbody>
<tr>
<td>Circus</td>
<td>43</td>
<td>63</td>
</tr>
<tr>
<td>Buteo</td>
<td>49</td>
<td>58</td>
</tr>
<tr>
<td>Archibuteo</td>
<td>50</td>
<td>68</td>
</tr>
</tbody>
</table>

Familj. Falconinæ. (Tafl. IV fig. 3.)

Denna familjs representanter bilda en homogen och från öfriga hithörande familjer väl afgränsad grupp.

Scapula eger ett acromialutskott, som står i kontakt med processus procoracoideus och extremitas coracoidalis claviculae. Os coracoidem eger en väl utvecklad processus procoracoideus, som står i kontakt med acromion och extremitas coracoidalis claviculae. Äfven inom denna som också inom föregående och följande familjer icktaga vi å margo medialis en incisura. Processus lateralis är föga utbildad.

nyckelbenet utefter nära nog hela sin längd endast tvenne ytor, nemligen en lateral och en medial.

De i *articulatio sterno-coracoidea* ingående ledytorna avika så till vida från de för Cohors II såsom allmänt gällande förhållandena, att den S-formiga krökningen står mera i benens sagittalana än transversala riktning.

Hithörande slägten, nemligen *Falco* L., *Hierofalco* BOIE, *Aesalon* KAUP., *Hypotriorchis* BOIE, *Erythropus* BREHM (ha vi ej varit i tillfälle att undersöka) och *Cerchneis* BOIE, förete följande värden med afseende på sternal- och coracoidal-

<table>
<thead>
<tr>
<th></th>
<th>sternalängd</th>
<th>coracoidalängd</th>
</tr>
</thead>
<tbody>
<tr>
<td>Falco</td>
<td>69</td>
<td>43</td>
</tr>
<tr>
<td>Hierofalco</td>
<td>72</td>
<td>49</td>
</tr>
<tr>
<td>Aesalon</td>
<td>37</td>
<td>26</td>
</tr>
<tr>
<td>Hypotriorchis</td>
<td>40</td>
<td>29</td>
</tr>
<tr>
<td>Cerchneis</td>
<td>35</td>
<td>28</td>
</tr>
</tbody>
</table>

Cristan eger en maximihöjd af:

<table>
<thead>
<tr>
<th></th>
<th>cristans höjd</th>
<th>half sternalängd</th>
</tr>
</thead>
<tbody>
<tr>
<td>Falco</td>
<td>25</td>
<td>34,5</td>
</tr>
<tr>
<td>Hierofalco</td>
<td>27</td>
<td>36</td>
</tr>
<tr>
<td>Aesalon</td>
<td>14</td>
<td>18,5</td>
</tr>
<tr>
<td>Hypotriorchis</td>
<td>16</td>
<td>20</td>
</tr>
<tr>
<td>Cerchneis</td>
<td>12</td>
<td>17,5</td>
</tr>
</tbody>
</table>

Sternalbredden utgör:

<table>
<thead>
<tr>
<th></th>
<th>sternalbred</th>
<th>sternalängd</th>
</tr>
</thead>
<tbody>
<tr>
<td>Falco</td>
<td>46</td>
<td>69</td>
</tr>
<tr>
<td>Hierofalco</td>
<td>52</td>
<td>72</td>
</tr>
<tr>
<td>Aesalon</td>
<td>28</td>
<td>37</td>
</tr>
<tr>
<td>Hypotriorchis</td>
<td>30</td>
<td>40</td>
</tr>
<tr>
<td>Cerchneis</td>
<td>27</td>
<td>35</td>
</tr>
</tbody>
</table>
Familj. Circaëtinae. (Taf. IV ligg. 4 och 5.)

De skandinaviska slägten, som hit höra, nemligen *Pernis* Cuv. och *Pandion* Sav., äro i flera afseenden skilda från hvarandra. Till sin struktur påminner det förstnämnda släget i mycket om vråkfoglarna, men avviker dock från dessa genom de för båda bithörande slägtena gemensamma karaktererna. Pandion deremot står ganska väl afsprängad från öfriga roffoglare.

Os coracoidenum är bredare än hos någon föregående familj och eger en mycket svagt utvecklad processus procoracoideus. *Clavicula* bildar en proportionelt skarp kurva.

Sternum eger endast spina externa, ej interna; men den limbus, som labia interna sulci coracoidei bilda, företer i sin midt en något utbredd yta, hvilken antingen är hel (*Pernis*) eller försedd med ett tydligt foramen pneumaticum (*Pandion*).

Hos slägten *Pernis* Cuv. (se Taf. IV fig. 4) företer sternallängden gent emot coracoidallängden följande värde:

<table>
<thead>
<tr>
<th>sternallängd</th>
<th>coracoidallängd</th>
</tr>
</thead>
<tbody>
<tr>
<td>58</td>
<td>39</td>
</tr>
</tbody>
</table>

Cristan eger en proportionelt något större höjd än den hos vråkarna:

<table>
<thead>
<tr>
<th>christans höjd</th>
<th>half sternallängd</th>
</tr>
</thead>
<tbody>
<tr>
<td>18</td>
<td>12</td>
</tr>
</tbody>
</table>

Sternalbredden utgör:

<table>
<thead>
<tr>
<th>sternalbredd</th>
<th>sternallängd</th>
</tr>
</thead>
<tbody>
<tr>
<td>41</td>
<td>58</td>
</tr>
</tbody>
</table>

Bivråkarna ega med afseende på byggnaden af bröstben och skuldergördel mycken likhet med *Buteo* och *Archibuteo*, men äro dock skilda från dessa genom en något högre crista och genom den större bredden af os coracoideum, uti hvilket senare förhållande de tyckas stå närmare örnarna, till hvilka de ock ansluta sig genom en skarpare böjd clavicula.

Slägetet *Pandion* Sav. åter (se Taf. IV fig. 5) står såväl med hänsyn till flera proportions- som strukturförhållanden isoleradt från både sin närmaste samtägning och öfriga till Hemeroharpages hörande foglar. — Sternallängden utgör gent emot coracoidallängden:

<table>
<thead>
<tr>
<th>sternallängd</th>
<th>coracoidallängd</th>
</tr>
</thead>
<tbody>
<tr>
<td>78</td>
<td>48</td>
</tr>
</tbody>
</table>
Cristan företer en ovanlig höjd och starkt konvex margo longitudinalis:

<table>
<thead>
<tr>
<th>cristans höjd</th>
<th>half sternallängd</th>
</tr>
</thead>
<tbody>
<tr>
<td>30</td>
<td>39.</td>
</tr>
</tbody>
</table>

Sternum eger sin maximibredd mellan apices af processus sterno-coracoidei:

<table>
<thead>
<tr>
<th>sterni maximibredd</th>
<th>sternallängd</th>
</tr>
</thead>
<tbody>
<tr>
<td>50</td>
<td>78.</td>
</tr>
</tbody>
</table>

Bredden mellan de vid sin ände afrundade trabecula utgör deremot endast:

<table>
<thead>
<tr>
<th>sterni distala bredd</th>
<th>sternallängd</th>
</tr>
</thead>
<tbody>
<tr>
<td>37</td>
<td>78.</td>
</tr>
</tbody>
</table>

Såsom vi af ofvanstående mättsförhållanden finna, eger sternum en mycket hög crista och margines laterales, hvilka konvergera ganska starkt bakåt. Dessutom företer sternum i sin distala del å hvardera sidan om cristan en temligen bred incisura, hvilken upptager en af de inre fjerdedelarna af margo posterior. Om läget för sterni foramen pneumaticum har ofvan blifvit ordadt. — Scapula är icke spetsigt utdragen, utan vid sin apex på tvären afklippt, och eger ett jemförelsevis svagt utvecklad acromialutskott. — Clavicula är ovanligt kraftig, starkt torqverad och bildar en ojemförligt skarp kurva, hvars medelpunkt ligger ungefär i plan med symphysis coraco-scapularis vid facies externa ossis coracoidei.

Familj. Aquilinae. (Taf. IV fig. 6.)

Denna jemte nästföljande familj innesluta de största skandinaviska representanterna för flocken Hemeroharpages. Sins-enellan förete hithörande slägten, åtminstone hvad de skandinaviska formerna beträffar, nemligen *Pseudaetis* Hodg. och *Aquila* Brunswick, knappast någon enda skiljaktighet i struktur och ega gemensamt stor öfverensstämmelse med den grupp af dagfåglarerna, till hvilken vi funnit Circus, Buteo, Archibuteo och Pernis ansluta sig — och måhända närmast bland dessa med det från de öfriga i någon mån afvikande slägtet Pernis.

Så är *os coracoideum* kort och bredt med föga utbildad processus procoracoideus, och

Clavicula beskrifver en periferi, som eger sin medelpunkt ungefär vid midten af coracoids facies interna.
Crista sterni är dock låg, öfvergående bakåt i ett tydligt markeradt planum postpectorale, och endast spina sterni externa finnes. Processus sterno-coracoideus bär ända ut till apex processus costales, och margines laterales divergera mer eller mindre bakåt. Fenestra sternalear plåga ofta förefinnas, men kunna dock variera till sin storlek och någon gång saknas än på båda, än åter på endast den ena sidan om crista sterni.

Slägtet Pseudaëtus Hongs. företer vis-à-vis coracoidal-längden följande sternallängd:

<table>
<thead>
<tr>
<th>sternallängd</th>
<th>coracoidal-längd</th>
</tr>
</thead>
<tbody>
<tr>
<td>87</td>
<td>53.</td>
</tr>
</tbody>
</table>

Höjden af crista sterni utgör endast:

<table>
<thead>
<tr>
<th>cristas höjd</th>
<th>half sternallängd</th>
</tr>
</thead>
<tbody>
<tr>
<td>24</td>
<td>43,5</td>
</tr>
</tbody>
</table>

Sternalbredden är:

<table>
<thead>
<tr>
<th>sternalbredd</th>
<th>sternallängd</th>
</tr>
</thead>
<tbody>
<tr>
<td>55</td>
<td>87</td>
</tr>
</tbody>
</table>

Hos Aquila Briss. utgör sternallängden gent emot coracoidal-längden:

<table>
<thead>
<tr>
<th>sternallängd</th>
<th>coracoidal-längd</th>
</tr>
</thead>
<tbody>
<tr>
<td>110</td>
<td>66.</td>
</tr>
</tbody>
</table>

Cristan eger en höjd af endast:

<table>
<thead>
<tr>
<th>cristans höjd</th>
<th>half sternallängd</th>
</tr>
</thead>
<tbody>
<tr>
<td>28</td>
<td>55.</td>
</tr>
</tbody>
</table>

Sternalbredden är:

<table>
<thead>
<tr>
<th>sternalbredd</th>
<th>sternallängd</th>
</tr>
</thead>
<tbody>
<tr>
<td>70</td>
<td>110.</td>
</tr>
</tbody>
</table>

Familj. Haliaëtinae. (Tafl. IV fig. 7.)

Åfven de båda slägten, som representera denna den sista till Hemeroharpages hörande familjen, nemligen Milvus Cuv. och Haliaëtus Sav., ansluta sig i större eller mindre män till den typ, som vi funnit uttalad hos vråkfoglarna. Särskilt finna vi öfverensstämmelsen af slägten Milvus med Pernis, tillhörande Circaëtinae, ganska stor. Haliaëtus åter, hvilket slägte öfverträffar till storleken af brösten och skuldergördel slägten Aquila, divergerar med några af sina relativa propor-
tions- och strukturförhållanden från detta senare släkte, som ju äfven ansluter sig till vräktypen.

Os coracoidenum är kort och mähända proportionellt ännu bredare än det hos Aquila.

Sternum förener ej något så tydligt begränsadt planum postpectorale (ätminstone ej hos Haliaëtus).

Hos Mileus Cuv. utgöra sternal- och coracoidallängderna:

<table>
<thead>
<tr>
<th>sternallängd</th>
<th>coracoidallängd</th>
</tr>
</thead>
<tbody>
<tr>
<td>67</td>
<td>44</td>
</tr>
</tbody>
</table>

Cristan eger en ganska hög resning:

| cristans höjd | half sternalvärd | 22 | 33.5 |

Sternalbredden utgör:

<table>
<thead>
<tr>
<th>sternalbredd</th>
<th>sternalvärd</th>
</tr>
</thead>
<tbody>
<tr>
<td>47</td>
<td>67</td>
</tr>
</tbody>
</table>

Hos Haliaëtus Sav. hvilket slägtes sterni margines laterales konvergera något bakåt, utgör sternallängden gent emot respektive coracoidallängd:

<table>
<thead>
<tr>
<th>sternallängd</th>
<th>coracoidallängd</th>
</tr>
</thead>
<tbody>
<tr>
<td>130</td>
<td>78</td>
</tr>
</tbody>
</table>

Crista sterni är jämförelsevis låg:

<table>
<thead>
<tr>
<th>cristans höjd</th>
<th>half sternalvärd</th>
</tr>
</thead>
<tbody>
<tr>
<td>34</td>
<td>65</td>
</tr>
</tbody>
</table>

Sternalbredden, uppmätt mellan apices af processus sternocoracoidei, utgör:

<table>
<thead>
<tr>
<th>sterni maximibredd</th>
<th>sternalvärd</th>
</tr>
</thead>
<tbody>
<tr>
<td>72</td>
<td>130</td>
</tr>
</tbody>
</table>

under det att bredden, mellan de distala ändarne af margines laterales är:

<table>
<thead>
<tr>
<th>sterni distala bredd</th>
<th>sternalvärd</th>
</tr>
</thead>
<tbody>
<tr>
<td>65</td>
<td>130</td>
</tr>
</tbody>
</table>

Hos detta slägtes skandinaviska representant, nemligen H. albiceps L., ha vi aldrig varit i tillfälle att iakttaga någon fenestra sternalis.

Sammanfattning.

Den tredje ordningens representanter hafva blifvit fördelade på tvenne flockar, hvilka äro äfven med afseende på den inre anatomiska byggnaden synnerligen väl afgränsade
EMIL HOLMGREN, DE SKANDINAVISKA FOGLARNES OSTEOLOGI.

Hos Nytharpages hafva vi iakttagit en åtminstone i sin distala del synnerligen svagt utvecklad clavícula, och ännu hos de fullbildade individerna af de smärre ugglearterna qvar-står denna claviculardel endast såsom ett fibröst stråk, under det att den främre delen blifvit ossifierad. I samband härmed finna vi ej heller någon del af den äfven som membranos bildning endast föga utbredda och utvecklade episternal-apparaten hafva öfvergått i ossöst tillstånd. — Inom Hemeroharpages iakttaga vi en processus episternalis furculæ, hvilken varierar något till sin utsträckning, men aldrig när någon vidare stor utveckling. Den är dessutom riktad mot den genom clavicelns starka krökning oftast föga aflägsnade spina sterni externa. Denna senare bildning, hvilken knappast saknas hos någon enda roffögel (åtminstone bland Hemerohar-
pages), tyckes städse stå i korrelation till det i membrana sterno-coraco-clavicularis ingående accessoriska ligamentum sterno-acrocoracoideum.

I följd af den jemförelsevis stora bredd os coracoideum eger, finna vi å dess mediala rand — i mån af coracoids bredd — antingen en incisura eller ett foramen för genomslappande af nervus supra-coracoideus, hvilken från sitt ur sprung ur huvudbrachialplexus löper lateralt och ventralt till coracoids mediala rand för att derifrån söka sig en väg till den inre ytan af den i sulcus supracoracoideus liggande muskeln af samma namn.
ORDNING IV.

Gallinæ (Rasores). (Tafl. V figg. 1 och 2).

Om vi undantaga den första inom denna ordnings gränser ställa familjen, nemligen Pteroclinae, erbjuder alla öfriga hithörande en synnerligen anmärkningsvärd likhet och överensstämmelse i byggnaden af bröstben och skuldergördel, och kan ordningen derför i detta afseende anses lika afrundad och skild från öfriga fogelklassens ordningar, som vi sågo förhållanden vara med Oscines eller med flocken Nyctharpages.

Hvad åter Pteroclinae beträffar, visar sig denna familj vara så differentierad från den i öfrigt så genomgående typen för Gallinæ, att man icke utan skäl kan sätta i fråga, huruvida denna familjs rätta plats är den han nu intager; synnerligast som familjens representanter företer för visso vida större gemenskap med den till Volucres hörande familjen Columbinae, om vi ock måste medgifva, att några detaljer antingen erinra om Gallinæ eller äro både för Columbinae och Gallinæ främmande. Vi ha i det föregående ordat i detta ämne och komma nu i tillfälle att vid beskrifningen framhålla de moment i byggnaden af bröstben och skuldergördel, som visa tillbaka på ifrågavarande familjs närmaste samstämmningar med hänsyn till de delar af den inre anatomiska byggnaden, som vi studera.

Clavicula är oftast svag, föga böjd, uteftter hela sin långt trind och nära nog jemsmal och endast vid sin extremintras coracoidalis något utbredd och tillplattad samt står med denna del i förbindelse med acrocoracoid och acromion. Acrocoraco- coid omfattas ej i någon mån af clavicelns coracoidala del. Furcula eger vid sin pars sternalis en utdragen, från sidorna tillplattad, triangulär processus episternalis, hvilken med sin bas är riktad bakåt och nedåt och dessutom är temligen långt aflägsnad från den öfvenledes bakåt mer eller mindre starkt lutande margo anterior cristae sternalis.

Med afseende på de uti articulatio sterno-coracoidea ingå- ende ledytorna, finna vi crista articularis ossis coracoidei vid ett sagittalsnitt i sin mediala del vara halvcirklformig, i sin lateralala starkt konvex och de motsvarande sternalytorna med sina konkaverningar noggrant sammanfallande med de respek- tive coracoidalytorna.

Då inom denna ordning karaktererna äro så genomgående, hafva vi ej behof af någon cohortindelning och egna också derför vår uppmärksamhet endast åt möjligens förekommande variationer i proportionerna skelettdelarna emellan inom hit- hörande familjer.
Familj. Pteroclinæ. (Tafl. V fig. 2.)

Såsom vi öfvan angifvit, erbjuder denna familj just ej mycket, som öfverensstämmer med de pregnanta karakterer, hvilka för öfrigt är genomböende för Gallinæ, utan står den fastmera isolerad från andra fogelfamiljer och i sin skelettbyggnad måhända närmast pekande tillbaka på Columbinæ. — Vi kunna härvid erinra om den synnerligen stora öfverensstämmelse i byggnaden af sternum, som förefinnes mellan Pteroclinæ och släaget Didunculus bland Peristeroidæ.

I afseende på scapulas allmänna utseende kunna vi emellertid icke förneka en viss likhet med hönsfoglarne skulderblad, i det att denna hos Pteroclinæ är nästan jembred och i spetsen något tillplattad.

Os coracoideum är kort och synnerligast mot sin sternalaf bredt. Processus procoracoideus är bättre utvecklad än hos hönsfoglar i öfrigt, och står i förbindelse med clavicula. Foramen pneumaticum saknas i coracoids fossa sterno-coracoidea.

Claviculae allmänna anläggning och proportionella längd öfverensstämna med samma förhållanden hos duffoglarna. Den står i förbindelse med processus procoracoideus, men omfattar ej i någon mån acrocoracoids nedre och mediala kant.

Till den skandinaviska faunan kan endast det ena hittörande europeiska släget räknas, nemligen *Syrrhaptes III.*, hvilket företer följande proportioner mellan sternal- och coracoidallängd:

<table>
<thead>
<tr>
<th>sternallängd</th>
<th>coracoidallängd</th>
</tr>
</thead>
<tbody>
<tr>
<td>60</td>
<td>23</td>
</tr>
</tbody>
</table>

Cristan, hvilken företer en foga konvex margo longitudinalis, eger en höjd af:
cristans höjd half sternallängd
27 30.

Sternalbredden utgör:

sternalbredd sternallängd
40 60.

De respektive längderna af incisuræ medialis et lateralis äro:

inc. med. inc. lat. sternallängd
6 27 60.

På grund af den framträdande skillnaden i storlek mellan de olika könen af följande familjers slägten och arter, vore det nog här, liksom måhända inom andra grupper, egentligast att angifva proportionerna både hos hane och hona af samma art, men dels hafva vi ej varit i tillfälle att undersöka båda könen, dels torde dessutom måtten å de respektive delarna af bröstben och skuldergördel vara proportionella även inom denna ordning, om ock en mera anmärkningsvärd skilljaktighet i storlek könen emellan gör sig gällande. — Tyvärr ha vi dock ej varit tillfälle att gransa antingen uteslutande hanar eller honor.

Familj. Tetraoninæ.

Bland hithörande slägten, nemligen *Lagopus Vieg. Tetrao L.* och *Tetrastes Keys.* et Blas., markerar sig det förstnämnda från de båda öfriga genom en starkare lutning bakåt af margo anterior cristae sterni. — Sternallängderna utgöra gent emot coracoidallängderna:

<table>
<thead>
<tr>
<th></th>
<th>sternallängd</th>
<th>coracoidallängd</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lagopus (♂)</td>
<td>80</td>
<td>37</td>
</tr>
<tr>
<td>Tetrao (♂)</td>
<td>105</td>
<td>54</td>
</tr>
<tr>
<td>Tetrastes (♀)</td>
<td>70</td>
<td>34</td>
</tr>
</tbody>
</table>

Cristan eger en höjd af:

<table>
<thead>
<tr>
<th></th>
<th>cristans höjd</th>
<th>half sternallängd</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lagopus</td>
<td>27</td>
<td>40</td>
</tr>
<tr>
<td>Tetrao</td>
<td>35</td>
<td>52.5</td>
</tr>
<tr>
<td>Tetrastes</td>
<td>22</td>
<td>35</td>
</tr>
</tbody>
</table>
Sternalbredden utgör:

<table>
<thead>
<tr>
<th>Spelesi</th>
<th>Sternalbredd</th>
<th>Sternallängd</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lagopus</td>
<td>52</td>
<td>80</td>
</tr>
<tr>
<td>Tetrao</td>
<td>65</td>
<td>105</td>
</tr>
<tr>
<td>Tetrastes</td>
<td>42</td>
<td>70</td>
</tr>
</tbody>
</table>

Djupen av de respektive incisurerna äro:

<table>
<thead>
<tr>
<th>Spelesi</th>
<th>Incisura med.</th>
<th>Incisura lat.</th>
<th>Sternallängd</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lagopus</td>
<td>56</td>
<td>23</td>
<td>80</td>
</tr>
<tr>
<td>Tetrao</td>
<td>68</td>
<td>30</td>
<td>105</td>
</tr>
<tr>
<td>Tetrastes</td>
<td>47</td>
<td>20</td>
<td>70</td>
</tr>
</tbody>
</table>

Bredden af incisuræ laterales utgöra:

<table>
<thead>
<tr>
<th>Spelesi</th>
<th>Maximibredd af inc. lat.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lagopus</td>
<td>21</td>
</tr>
<tr>
<td>Tetrao</td>
<td>25</td>
</tr>
<tr>
<td>Tetrastes</td>
<td>24</td>
</tr>
</tbody>
</table>

Familj. Phasianinæ.

Hos slägnet *Phasianus* L. (♀) företer sternum gent emot coracoidallängden följande längd:

<table>
<thead>
<tr>
<th>Sternallängd</th>
<th>Coracoidallängd</th>
</tr>
</thead>
<tbody>
<tr>
<td>90</td>
<td>45</td>
</tr>
</tbody>
</table>

Cristans höjd utgör:

<table>
<thead>
<tr>
<th>Cristans höjd</th>
<th>Half sternallängd</th>
</tr>
</thead>
<tbody>
<tr>
<td>27</td>
<td>45</td>
</tr>
</tbody>
</table>

Sternalbredden är:

<table>
<thead>
<tr>
<th>Sternalbredd</th>
<th>Sternallängd</th>
</tr>
</thead>
<tbody>
<tr>
<td>50</td>
<td>90</td>
</tr>
</tbody>
</table>

Incisurernas djup utgöra:

<table>
<thead>
<tr>
<th>Incisura med.</th>
<th>Incisura lat.</th>
<th>Sternallängd</th>
</tr>
</thead>
<tbody>
<tr>
<td>62</td>
<td>22</td>
<td>90</td>
</tr>
</tbody>
</table>

Incisura lateralis eger en bredd af 45 mm.

Familj. Perdicinæ.

Hos hithörande skandinaviska slägten, *Perdix* Lath. och *Coturnix* Barr., förete sternal- och coracoidallängderna följande värden:

<table>
<thead>
<tr>
<th>Spelesi</th>
<th>Sternallängd</th>
<th>Coracoidallängd</th>
</tr>
</thead>
<tbody>
<tr>
<td>Perdix (♂)</td>
<td>70</td>
<td>35</td>
</tr>
<tr>
<td>Coturnix (♀)</td>
<td>37</td>
<td>21</td>
</tr>
</tbody>
</table>
Cristan eger en maximihöjd af:

<table>
<thead>
<tr>
<th></th>
<th>cristans höjd</th>
<th>half sternal-</th>
</tr>
</thead>
<tbody>
<tr>
<td>Perdix</td>
<td>23</td>
<td>35</td>
</tr>
<tr>
<td>Coturnix</td>
<td>13</td>
<td>18.5</td>
</tr>
</tbody>
</table>

Sternalbredden utgör:

<table>
<thead>
<tr>
<th></th>
<th>sternalbred</th>
<th>sternallängd</th>
</tr>
</thead>
<tbody>
<tr>
<td>Perdix</td>
<td>45</td>
<td>70</td>
</tr>
<tr>
<td>Coturnix</td>
<td>22</td>
<td>37</td>
</tr>
</tbody>
</table>

Incisurernas djup är:

<table>
<thead>
<tr>
<th></th>
<th>inc. med.</th>
<th>inc. lat.</th>
<th>sternallängd</th>
</tr>
</thead>
<tbody>
<tr>
<td>Perdix</td>
<td>50</td>
<td>20</td>
<td>70</td>
</tr>
<tr>
<td>Coturnix</td>
<td>24</td>
<td>12</td>
<td>37</td>
</tr>
</tbody>
</table>

Incisuræ laterales ega en bredd af:

<table>
<thead>
<tr>
<th></th>
<th>maximibredd af inc. lateralis</th>
</tr>
</thead>
<tbody>
<tr>
<td>Perdix</td>
<td>30</td>
</tr>
<tr>
<td>Coturnix</td>
<td>14</td>
</tr>
</tbody>
</table>

Sammanfattning.

Vi ha redan förut på mer än ett sätt påpekat den stora överensstämmelse i struktur, som karakteriserar denna ordnings familjer, och derjemte framhållit, hurusom dock en af dessa familjer, nemligen Pteroclinæ, åtviker i flerfaldiga hänseenden från ordningens i öfrigt så genomgående karakterer, på samma gång den ovedersägligligen visar sig ega ej så få betingelser för ett närmare anslutande till familjen Columbine. Vi vilja endast hafta påpekat dessa påtagliga förhållandena, men lemma för öfrigt frågan öppen, i hvilken relation höns- och dufglar stå till hvarandra, och hvilken inbördes ställning, som af denna frågas lösning nödvändigtvis skulle blifva följen mellan ifrågavarande grupper.

En partiel ossifikation af episternalapparaten iakttaga vi uti den stora, från sidorna tillplattade, triangulära och bakät och nedåt riktade processus episternalis furculæ, hvarigenom till en del flygmunskulaturen får en något fastare ursprungsyta, än den i annat fall skulle ega i den genom cristans ställning och höjd stora lamina mediana af membrana sterno-coracoclavicularis. För öfrigt erbjuder det af skulder- och episternalapparaten bildade ursprungsgebitet för pectoralmuskulaturen.
EMIL HOLMGREN, DE SKANDINAVSKA FOGLARNES OSTEOLOGI.

genom claviceln's svaga byggnad och genom de af de ingående benens inbördes ställning och form resulterade stora membrandösa områdena, jämförelsevis föga resistens och stadga vid vingrörelsen, hvaraf följer mindre lugn och utåttighet under flygten.

Från den öfre vinkeln af septum interarticulare uppspringa de i laminae laterales af membrana sterno-coraco-clavicularis ingående ligamenta sterno-acrocoracoidea.
ORDNING V.

Grallatores (Tafl. V figg. 3 och 4; VI, VII figg. 1—4).

Bland de karakterer, som vi återfinna hos nära nog alla till Grallatores hörande familjer och slägten, märka vi:

Scapula är mer eller mindre långsträckt, i spetsen utdragen, ej, såsom hos Rasores, tillplattad.

Oc coracoideum eger oftast väl utvecklade processus lateralis och procoracoideus.
Angulus coraco-scapularis utgör i flertalet fall ungefär 70 grader, endast hos en grupp (Rallinae) finna vi gradantalet större.

Clavicula är i allmänhet jemförelsevis kraftig, sällan rak, utan bildar fastmera oftast en ganska skarp kurva, hos några är den dock S-formigt böjd.

Sternum är försedt med en oftast hög crista, med sällan tydligt och fritt framspringande, afrundad apex, samt med väl uttalade lineae interpectorales. Den distala delen är sällan hel, utan vanligen genombruten av en eller två mer eller mindre djupgående incisurer.

De mot varandra svarande ytorna i articulatio sterno-coracoidea äro vid sagittalsnitt genom den mediala delen föga böja eller understundom nästan fullkomligt plana.

Cohors I (Herodii). (Taf. V fig. 3).

De skandinaviska slägten af den enda hithörande europeiska familjen Ardeine, hvilka vi varit i tillfalle att granska, nemligen Ardea L., Herodias Boie och Botaurus Steph., erbjuder oss emellan stora öfverensstämmer med afseende på byggnaden af bröstben och skuldergörden.

Scapula är långsträckt och spetsigt utdraget samt stöter med sin acromialprocess till extremitas coracoidalis claviculæ, men endast obetydligt till proc. procoracoideus.

Os coracoideum är jemförelsevis långt och eger en föga utvecklad proc. procoracoideus, hvilken med sin spets knappast när fram till acromion scapulæ och sålunda ej kan stå i direkt förbindelse med clavicula. Ett egendomligt och karakteristiskt förhållande erbjuder crista articularis sternales dels genem den transversela utsträckningen af de respektive coracoidalfalsarna å sternum lateralt om medianplanet, dels ock i samband dermed vis-a-vis varandra. De båda coracoidbenens sternaals artikulationseristor ega nemligen en ovanligt stor transversel bredd, i följd hvaraf dels dessas anguli medias distales, dels dermed åfven sulci coracoidales sterni komma att korsa varandra i sterni midtplan. Härvid finna vi städse det högra coracoidbenet, hvilket för öfrigt eger en något bredare crista articularis, liggande utanpå det venstra.

Angulus coraco-scapularis utgör ungefär 70 grader.

Till hvad vi ofvan ordat om de uti articulatio sterno-coracoidea ingående ledytorna kunna vi tillägga, att crista sternalis är relatifift ganska djupt infalsad i motsvarande sulcus coracoideal, såväl i den mediala, som ock i den laterala delen.

Slägtet Ardea L. företer följande sternal- och coracoideal-längder:

<table>
<thead>
<tr>
<th></th>
<th>sternallängd</th>
<th>coracoideal-längd</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>75</td>
<td>61</td>
</tr>
</tbody>
</table>

Cristans höjd utgör:

<table>
<thead>
<tr>
<th></th>
<th>cristas höjd</th>
<th>halv sternallängd</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>23</td>
<td>37,5</td>
</tr>
</tbody>
</table>

Den distala sternalbredden är:

<table>
<thead>
<tr>
<th></th>
<th>sternallängd</th>
<th>coracoideal-längd</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>33</td>
<td>75</td>
</tr>
</tbody>
</table>

Incisuren eger ett djup af:

<table>
<thead>
<tr>
<th></th>
<th>incisura</th>
<th>sternallängd</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>10</td>
<td>75</td>
</tr>
</tbody>
</table>

Spina sterni externa är jemsförelsevis tydligt uttalad. Herodias Boie eger följande proportioner:

<table>
<thead>
<tr>
<th></th>
<th>sternallängd</th>
<th>coracoideal-längd</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>83</td>
<td>59</td>
</tr>
</tbody>
</table>
EMIL HOLMGREN, DE SKANDINAViska FOGlARnES OSTEOLoGI.

<table>
<thead>
<tr>
<th></th>
<th>24</th>
<th>37</th>
<th>15</th>
<th>41,5</th>
<th>83</th>
<th>83</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cristans höjd (cm)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Half sternallängd</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sternalbredd (cm)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sternalallängd (cm)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Incisura (cm)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Vi iakttaga hos detta slägte en större korsning af ossa coracoidea, än inom föregående slägte.

Hos Botaurus Steph. hafva vi funnit följande måttförrållanden:

<table>
<thead>
<tr>
<th></th>
<th>60</th>
<th>18</th>
<th>28</th>
<th>53</th>
<th>30</th>
<th>60</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sternalallängd (cm)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Coracoidallängd (cm)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cristans höjd (cm)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Half sternallängd</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sternalbredd (cm)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sternalallängd (cm)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Incisura (cm)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Furcula när ej apex cristæ. Margines laterales sternales divergera något bakåt, och processus lateralis ossis coracoidei börjer sig hakformigt framåt. Spina sterni externa är föga utvecklad, och ossa coracoidea förete relatift stor korsning.

Cohors II (Pelargi). (Tafl. V figg. 4, VI 1 och 2.)

Inom denna flock är vi ej i tillfälle att tillfullo iakttaga samma öfverensstämnelse i struktur, som karakteriserade den förra. Den tyckes fastmera innehållas af former, hvilka bilda öfvergångar från föregående flock's representanter öfver såväl till nästföljande vadaregrupper, som ock till Lamellirostres bland Natatores.

Scapula är af ungefär samma utseende som hos föregående flock's foglar, och dess acromialutskott står i förbindelse med extremitas coracoidalis claviculae och i större män än hos föregående slägten med processus procoracoideus. Os coracoideum är hos flertalet af Pelargi proportionelt kortare, än inom föregående cohort, och företer en bättre utvecklad processus procoracoideus. Dessutom kan man här ej iakttaga någon väsentligare korsning af coracoidbenens anguli.
mediales distales. En erinran om denna spåra vi dock hos familjen Ciconiinae.

Sterni margines laterales löpa nästan parallellt, och bröstbenet företer en proportionelt högre crista, än hvad förhållandet var inom föregående cohort, på samma gång som vi finna maximihöjden vara belägen närmare apex criste. Å hvardera sidan om bröstbenskammen finnes en eller tvenne incisurer.

Åtminstone hos familjen Ciconiinae finna vi crista sternalis i *articulatio sterno-coracoidea* i sagittalsnitt förte en mera liggande S-formig krökning i den mediala delen. Den laterala delen af samma crista är enkelt konvex med motsvarande konkav sulcus coracoidalis.

I Sundevalls uppställning börjar denna cohort med Plataleinae. Hvad beträffar förhållandet i byggnaden af bröstben och skuldergördel hithörande familjer emellan, skulle vi dock vara benägne att ställa Ciconiinae först, hvilken familj tyckes stå föregående flocks representanter närmare än någon annan hithörande.

Familj. Plataleinae. (Tafl. VI fig. 1.)

Slägtet *Platalea* L. företer följande proportionsförhållanden:

<table>
<thead>
<tr>
<th></th>
<th>sternallängd</th>
<th>coracoidallängd</th>
<th>cristans höjd</th>
<th>half sternallängd</th>
<th>sternalbredd</th>
<th>sternallängd</th>
<th>inc. med.</th>
<th>inc. lat.</th>
<th>sternallängd</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>85</td>
<td>58</td>
<td>35</td>
<td>42,5</td>
<td>45</td>
<td>85</td>
<td>14</td>
<td>13</td>
<td>85</td>
</tr>
</tbody>
</table>

Familj. Ciconiæ. (Tafl. V fig. 4.)

Hos *Ciconia* L. iakttaga vi några i förhållande till föregående och denna senare närmare stående efterföljande familj afvikande proportioner:

<table>
<thead>
<tr>
<th></th>
<th>sternallängd</th>
<th>coracoïdallängd</th>
</tr>
</thead>
<tbody>
<tr>
<td>cristans höjd</td>
<td>47</td>
<td>47</td>
</tr>
<tr>
<td>half sternallängd</td>
<td></td>
<td></td>
</tr>
<tr>
<td>sternallängd</td>
<td>54</td>
<td>94</td>
</tr>
<tr>
<td>incisura</td>
<td>20</td>
<td>94</td>
</tr>
</tbody>
</table>

Os coracoideum crinar med afseende på sin proportionella längd om förhållandet hos föregående flock, och dess proc. procoracoideus när ej fram till clavicula. — Vidare företer clavicula, såsom ofvan blifvit påpekad, någon S-formig kröning och står med sin nedåt och bakåt riktade processus episternalis furculæ i amphiarthrotisk förbindelse med den temligen låg framspringande apex crista. Extremitas coracoidealis, som för öfrigt på sin mediala yta är försett med ett foramen pneumaticum, är bredast, och nyckelbenet har, i likhet med förhållandet inom föregående cohort, undergått en tydlig torsion. — Sternum eger en crista, som i höjd motsvarar halfva sternallängden och har en vulstig linea interpectoralis. Den obetydligt utvecklade spina sterni externa är på sin undre yta försedd med en fördjupning, som fortsätter ett
Stycke ned på radix cristaë sternalis. Sterni distala del eger å hvardera sidan om kammen en enda incisur.

Familj. Ibydinæ. (Tafl. VI fig. 2.)

Det skandinaviska slägten, som hit kan räknas, nemligen *Plegadis* Kaup., ansluter sig närmast till Plataleinae, och kan sågas bilda genom några af sina strukturförhållanden en öfvergång till följande cohorter. — Åfven, och kanske i huvudsaklig mån, de iakttagna proportionerna leda till denna betraktelse:

<table>
<thead>
<tr>
<th></th>
<th>sternallängd</th>
<th>coracoïdallängd</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>65</td>
<td>37</td>
</tr>
<tr>
<td>cristans höjd</td>
<td>half sternallängd</td>
<td></td>
</tr>
<tr>
<td></td>
<td>28</td>
<td>32,5</td>
</tr>
<tr>
<td>distal sternalbredd</td>
<td>sternallängd</td>
<td></td>
</tr>
<tr>
<td></td>
<td>39</td>
<td>65</td>
</tr>
<tr>
<td>inc. med.</td>
<td>inc. lat.</td>
<td>sternallängd</td>
</tr>
<tr>
<td></td>
<td>13</td>
<td>14</td>
</tr>
</tbody>
</table>

Os coracoideum och clavicula visa i det närmaste samma strukturförhållanden som hos Plataleinae. — Åfven sternum erinrar i de flesta hänseenden om samma familj. Endast spina sterni externa är bättre utvecklad och från sidorna hoptryckt.

Cohors III (Limicolæ) et Cohors IV (Cursores).

(Tafl. VI figg. 4—16, VII figg. 1—4).

Dels på grund af de talrika gemensamma karakterer, som tillkomma flertalet af dessa båda cohorters representanter, men dels också på grund af några hithörande typer, som i mer eller mindre mån divergera till sin struktur från öfriga samtågningar, hafva vi funnit lämpligast att behandla Limicolæ och Cursores i ett sammanhang, sedan vi dock från dessa först till särskild behandling uttagit de mera fristående formerna, af hvilka i synnerhet en grupp, nemligen de till familjen Rallinae hörande, så distinkt markerar sig från alla öfriga vadare, att den förvisso förtjenat, såväl som mången annan af vadarnes typer, sin egen flock.

Genom en slik konvertering af Sundevalls vadaresystem, nemligen genom att låta Rallinae inleda Grallatores, skulle, utom denna öfvergång mellan höns- och vadarefoglar, också vinnas ett annat önskemål, nemligen en något så när tänkbar förmedling mellan vadare och simfoglar, derigenom att den cohort, som nu inleder Grallatores, komme att afsluta samma ordning och genom sin ganska i ögonen fallande öfverensstämmelse i struktur — åtminstone af bröstben och skuldergördel — med Phoenicopterus, och dermed även med Lamellirostres, — skulle bilda med detta nyssnämnda slägte en öfvergång till Natatores. Fråga är väl dessutom, huruvida verkligligen Herodii och Pelargi genom sin struktur skulle kunna sågas utgöra det allmänna uttrycket för vadaretypen, — genom hvilket enda förhållande dessa båda cohorter vore rättsfädigade till sin plats såsom inledande grupper, då de förvisso i intet afseende kunna till sin byggnad (och troligen ej heller i något annat hänseende) betraktas såsom förmedlande former mellan höns- och vadarefoglar. Sant är visserligen, att vi inom Grallatores finna rätt många heterogena former och att det sålunda ej ter sig så lätt att finna den struktur, som skulle kunna sägas vara mest genomgående; men månne vi dock icke ha att söka denna typform hellre t. ex. bland Limicolae, än bland de nyssnämnda cohorterna?

Scapula är temligen kraftig, med föga framåtböjdt acromialutskott, hvilket står i förbindelse med processus procoracoides och extremitas coracoidalis clavicleae.

1 Att vi emellertid icke endast uti Flamingo ha att söka en förmedlande länk mellan simfoglar och vadare, derom vittna de talrika öfverensstämmelser i struktur, som förefinnas mellan Longipennes och särskilt vissa af Cursorines.

Angulus coraco-scapularis utgör i flertalet fall ungefär 70 grader.

Sternum markerar sig genom en hög crista, hvilkens margo longitudinalis är mer eller mindre konvex. Sternallängden öfverstiger, särdeles hos flertalet Limicolæ, rätt ansenligt den respektive sternalbredden. Hos Tringerna, åfvensom hos Cursores företer dock sternalbredden relativt större mått. Den distala delen, hvars margo posterior hos flertalet Limicolæ bildar en mer eller mindre skarp, bakåt konvex båge, men hos Cursores nærmar sig en rät linie, är aldrig hel, utan försett med en eller tvenne incisurer på hvardera sidan om crista sternalis. Av dessa inskärningar finna vi den mediala vara hos Limicolæ oftast betydligt grundare än den laterala och kan hos dessa t. o. m. saknas; hos Cursores åter är skilnad i djup mindre. Af de båda spinae sterni, hvilka, då de finnas, hafva sammansmält med hvarandra, plägar i flertalet fall den facett af den gemensamma processen, som svarar mot spina externa, markera sig genom sin prominens och visar sig dervid hoptryckt från sidorna. Hos släaget Scolopax finna vi dock den interna facetten relativt mer uttalad. Något egenligt septum mellan de båda coracoidbenen bilda de med hvarandra sammansmälta spinae sternalis icke (möjlichen med undantag af Scolopax), då processus mediales af ossa coracoidea
skjuta mot hvarandra öfver spinans dorsalyta. — Slägget Otis saknar nästan fullständigt såväl spina externa som interna. — Margines laterales sternales löpa i allmänhet temligen parallellt. Hos Scolopax, hvilket slägte för öfrigt ej obetydligt differenceerar sig genom säregna karaktser, divergera de tydligt bakåt. — Vi åro för öfrigt oftast i tillfalle att iakttaga tydliga lineae interpectorales såväl sterni som eristæ, af hvilka de fôrra konvergera bakåt.

Framför allt hos Limicole, men äfven hos Currores iakttaga vi i byggnaden af de mot hvarandra svarande ytorna i articulatio sterno-coracoidea förutsättningar för ganska olik-artade exkursioner. Så finna vi artikulationsytorna i transversel diameter korta, och sagittalsnitt genom leden visar i den mediala delen föga böjda ytor. I den laterala delen äro en sulcus coracoidalis och deremot svarande erista sternalis tydligt uttalade.

Familj. Totaninæ. (Tafl. VI figg. 4—10.)

Hos de fem förstnämnda slägtena, hvilka närmast tyckas sluta sig till hvarandra, hafva vi funnit följande proportioner:
Vi finna sålunda hos dessa fem slägten en påtaglig överensstämmelse i proportioner mellan de skelettdelar vi behandla. Vi se emellertid, hurusom släget Numenius (Tafl. VI fig. 4) utmärker sig genom sitt proportionelt stora djup af incisura medialis, i detta afseende erinrande om Ibidinae i föregående flock. Hos släget Limosa är samma incisur obetydlig, och hos de öfriga saknas den oftast mer eller mindre fullständigt (se Tafl. VI figg. 5 och 8).

På grund af den i flera hänseenden stora överensstämmelse i struktur och proportioner, som släget Lobipes Cuv. (och dermed utan tvifvel också Phalaropus L.) (Tafl. VI fig. 9) visar med ofvanstående slägten upptaga vi detta nu närmast i ordningen:
EMIL HÖLMGREN, DE SKANDINAVISKA FOGLARNES OSTEOLGI.

sternallängd 28
coracoidallängd 13.
cristans höjd 11
half sternallängd 14.
sternalbredd 15
sternallängd 28.
incisura 6
sternallängd 28.

Om vi jämföra dessa siffror med t. ex. dem hos Actitis, skola vi finna rätt stora likheter. Strukturen är i mycket densamma, om vi möjlichen undantaga en något skarpare kurva på clavicula och en annan divergens av lineæ interpectorales sterni.

Calidris Cuv., Pelidna Cuv. och Actodromus Kaup. (Tafl. VI figg. 6 och 7) ega mycket gemensamt med afseende på byggnaden av bröstben och skuldergördel:

<table>
<thead>
<tr>
<th></th>
<th>sternallängd</th>
<th>coracoidallängd</th>
</tr>
</thead>
<tbody>
<tr>
<td>Calidris</td>
<td>34</td>
<td>15</td>
</tr>
<tr>
<td>Pelidna</td>
<td>31</td>
<td>14</td>
</tr>
<tr>
<td>Actodromus</td>
<td>23</td>
<td>11</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>cristans höjd</th>
<th>half sternallängd</th>
</tr>
</thead>
<tbody>
<tr>
<td>Calidris</td>
<td>15</td>
<td>17</td>
</tr>
<tr>
<td>Pelidna</td>
<td>14</td>
<td>15,5</td>
</tr>
<tr>
<td>Actodromus</td>
<td>10</td>
<td>11,5</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>sternallängd</th>
</tr>
</thead>
<tbody>
<tr>
<td>Calidris</td>
<td>17</td>
</tr>
<tr>
<td>Pelidna</td>
<td>19</td>
</tr>
<tr>
<td>Actodromus</td>
<td>13</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>inc. med.</th>
<th>inc. lat.</th>
<th>sternallängd</th>
</tr>
</thead>
<tbody>
<tr>
<td>Calidris</td>
<td>4</td>
<td>9</td>
</tr>
<tr>
<td>34</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pelidna</td>
<td>5</td>
<td>9</td>
</tr>
<tr>
<td>31</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Actodromus</td>
<td>3</td>
<td>6</td>
</tr>
<tr>
<td>23</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Vi finna hos dessa slägten ett relativt kortare och bredare sternum, än inom de föregående, på samma gång som vi iakttaga en incisura medialis, som till sitt djup motsvarar ungefär halvta djupet af incisura lateralis. — Med afseende
på sternalbredden tyckes Actodromus öfverensstämma mer med Calidris än med Pelidna.

Så återstår slutligen av de slägten vi varit i tillfälle att granska, tillhöriga familjen Totaninæ, slägtena *Scolopax* L. (Tafl. VI fig. 10) och *Telmatias* Boie, af hvilka det förstnämnda visar sig så i flera afseenden avvikande. De af oss iakttagna proportionerna hafva varit följande:

<table>
<thead>
<tr>
<th>Scolopax</th>
<th>Telmatias</th>
</tr>
</thead>
<tbody>
<tr>
<td>sternallängd</td>
<td>64</td>
</tr>
<tr>
<td>coracoidallängd</td>
<td>27</td>
</tr>
<tr>
<td>cristans höjd</td>
<td>26</td>
</tr>
<tr>
<td>half sternallängd</td>
<td>32</td>
</tr>
<tr>
<td>sternalbredd</td>
<td>32</td>
</tr>
<tr>
<td>sternalallängd</td>
<td>64</td>
</tr>
<tr>
<td>incisura</td>
<td>14</td>
</tr>
<tr>
<td>sternallängd</td>
<td>64</td>
</tr>
</tbody>
</table>

Telmatias och *Scolopax* ega såsom mera gemensamma karaktärer, hvilka i större eller mindre grad skilja dessa slägten från öfriga representanter för familjen Totaninæ, att spina sterni externa saknar fullständigt (*Scolopax*) eller till större delen (*Telmatias*) den prominens vi funnit genomgående för öfriga till Totaninæ hörande slägten; och vidare att på samma gång och i samma mån spina sterni interna skarpere framträder och bildar ett septum mellan de båda ossa coracoidea. Sterni margines laterales divergera bakåt starkast hos *Scolopax*, i samband med sterni relatift större maximitre, hvilken senare förefinnes hos båda slägtena mellan ur sprungen för trabecula lateralia, hvilka konvergera bakåt. Brösthösten eger för öfrigt endast en incisur på hvarandra sidan om cristan. Ungefär vid nyssnämnda trabecelursprung höjer sig en transverselt och något bakåt löpande ås, hvilkens kon vexitet vetter inåt thorax. Denna strukturendomlighet finna vi uttalad i mindre märkbar grad hos en stor del andra foglar, men specielt bland vadare se vi dennes prominens särskilt
hos Scolopax vara anmärkningsvärd. Linea interpectoralis cristæ framträder hos Telmatias lika skarp och markerad som hos öfriga till Totaniæ hörande grupper; hos Scolopax åter är den knappast skönjbar. Detta senare slägte eger derjemte nästan fullkomligt raka scapulae och en jemförelsevis svag clavicelkurva.

Familj. Himantopodinæ. (Tafl. VI fig. 11.)

Det skandinaviska slägte, som hit hör, nemligen *Recurvirostra* L., eger utan gensägelse många moment i sin byggnad, som tyda på en ganska stor fränskrap med flertalet af följande flocks representanter, och särskilt bland skandinaviska former med Haematopus; och vi kunna icke undgå att finna denna öfverensstämmelse mera påtaglig, än hvad förhållandet torde vara med slägtet Strepsilas, som inleder Cursores. — Så är sternum jemförelsevis kort och bredt:

<table>
<thead>
<tr>
<th>sternallängd</th>
<th>coracoidallängd</th>
</tr>
</thead>
<tbody>
<tr>
<td>56</td>
<td>26</td>
</tr>
<tr>
<td>cristans höjd</td>
<td>half sternallängd</td>
</tr>
<tr>
<td>22</td>
<td>28</td>
</tr>
<tr>
<td>sternallbredd</td>
<td>sternallängd</td>
</tr>
<tr>
<td>28</td>
<td>56</td>
</tr>
<tr>
<td>inc. med.</td>
<td>inc. lat.</td>
</tr>
<tr>
<td>10</td>
<td>13</td>
</tr>
</tbody>
</table>

Sterni margo posterior är nästan rak, och, såsom ofvan synes, öfverstiger djupet af incisura medialis halfva det af incisura lateralis. Omedelbart bakom symphysis coraco-scapularis eger os coracoideum ett foramen supracoracoidicum, — förhållanden, hvilka ju, såsom vi förut lärt känna, i mer eller mindre hög grad karakterisera flertalet af Cursores. Det nyssnämnda benet har derjemte en i förhållande till föregående familjs representanter bredare crista articularis, hvilken är mera infalsad i motsvarande sulcus coracoidalis sterni. Spina sterni interna saknas, och från angulus medialis distalis ossis coracoidei höjer sig i proximal riktning en mindre process.

Familj. Charadriinæ. (Tafl. VI figg. 12—15.)

Af hithörande skandinaviska, Cursores inledande slägten, som vi varit i tillfälle att granska, nemligen *Strepsilas Illig.*

<table>
<thead>
<tr>
<th></th>
<th>sternallängd</th>
<th>coracoidallängd</th>
</tr>
</thead>
<tbody>
<tr>
<td>Strepsilas</td>
<td>41</td>
<td>19</td>
</tr>
<tr>
<td>Vanellus</td>
<td>51</td>
<td>24</td>
</tr>
<tr>
<td>Charadrius</td>
<td>51</td>
<td>24</td>
</tr>
<tr>
<td>Aegialites</td>
<td>32</td>
<td>15</td>
</tr>
<tr>
<td>Haematopus</td>
<td>65</td>
<td>31</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>cristaus höjd</th>
<th>half sternallängd</th>
</tr>
</thead>
<tbody>
<tr>
<td>Strepsilas</td>
<td>17</td>
<td>20,5</td>
</tr>
<tr>
<td>Vanellus</td>
<td>20</td>
<td>25,5</td>
</tr>
<tr>
<td>Charadrius</td>
<td>20</td>
<td>25,5</td>
</tr>
<tr>
<td>Aegialites</td>
<td>13</td>
<td>16</td>
</tr>
<tr>
<td>Haematopus</td>
<td>24</td>
<td>32,5</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>sternalbredd</th>
<th>sternallängd</th>
</tr>
</thead>
<tbody>
<tr>
<td>Strepsilas</td>
<td>22</td>
<td>41</td>
</tr>
<tr>
<td>Vanellus</td>
<td>24</td>
<td>51</td>
</tr>
<tr>
<td>Charadrius</td>
<td>22</td>
<td>51</td>
</tr>
<tr>
<td>Aegialites</td>
<td>18</td>
<td>32</td>
</tr>
<tr>
<td>Haematopus</td>
<td>34</td>
<td>65</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>inc. med.</th>
<th>inc. lat.</th>
<th>sternallängd</th>
</tr>
</thead>
<tbody>
<tr>
<td>Strepsilas</td>
<td>4</td>
<td>9</td>
<td>41</td>
</tr>
<tr>
<td>Vanellus</td>
<td>7 (foramen)</td>
<td>10</td>
<td>51</td>
</tr>
<tr>
<td>Charadrius</td>
<td>10</td>
<td>12</td>
<td>51</td>
</tr>
<tr>
<td>Aegialites</td>
<td>8</td>
<td>8</td>
<td>32</td>
</tr>
<tr>
<td>Haematopus</td>
<td>14</td>
<td>14</td>
<td>65</td>
</tr>
</tbody>
</table>

Såsom vi af ofvanstående måttförhållanden finna, ega Strepsilas, Aegialites och Haematopus ett sternum, hvars bredd öfverstiger motsvarande halvva längd, då deremot hos Vanellus och Charadrius (Tafl. VI fig. 14) ett motsatt förhållande gör sig gällande. Dock torde man kunna säga, att sternalbredden även hos dessa senare foglar relativt öfverträffar de respektive sternalbredderna hos föregående familjs representanter. Vi finna vidare, hurusom incisura sternalis medialis eger ett
EMIL HOLMGREN, DE SKANDINAVISKA FOGLARNES OSTEOLGI.

proportionelt stort djup, utom hos Strepsilas (Tafl. VI fig. 12), der vi iakttaga ett förhållande i detta hänseende, som på-minner om det vi sågo inom Totaninæ. Hos Vanellus är ett föramen, i stället för en incisura medialis, nästan konstant (Tafl. VI fig. 13), och spina sterni interna saknas fullständigt hos Hæmatopus (Tafl. VI fig. 15).

Familj. Otidinæ. (Tafl. VI fig. 16.)

<table>
<thead>
<tr>
<th>sternallängd</th>
<th>coracoidallängd</th>
</tr>
</thead>
<tbody>
<tr>
<td>177</td>
<td>94</td>
</tr>
<tr>
<td>cristans höjd</td>
<td>half sternallängd</td>
</tr>
<tr>
<td>72</td>
<td>88,5.</td>
</tr>
<tr>
<td>sternalbredd</td>
<td>sternallängd</td>
</tr>
<tr>
<td>105</td>
<td>177.</td>
</tr>
<tr>
<td>inc. med.</td>
<td>inc. lat.</td>
</tr>
<tr>
<td>24</td>
<td>28</td>
</tr>
</tbody>
</table>

De båda öfriga till Cursoræ räknade familjerna, nemligen Gruinæ och Rallinæ, skilja sig till sin struktur i högst väsent-lig grad från öfriga vadare, på samma gång de sins emellan ej obetydligt divergera från hvarandra. Att Gruinæ emelltid mer än någon annan familj närmast ansluter sig till Rallinæ, kan icke förnekas.

Vi ha redan vid inledningen till Limicolæ och Cursoræ nämt, hurusom företrädesvis Rallinæ tyckes ega någon gemen-samhet med ordningen Raiores, på samma gång vi sakna hvarje anledning till att förmena någon fränskap mellan sumphönsen och Natatores. Den skildring vi här nedan lemma
af dessa sist ställda vadarens struktur, torde väl också i någon mån kunna styrka vår framkastade mening om sumphönsens naturligare plats i systemet.

Den säregna byggnaden av bröstben och skuldergördel, som vi finna hos tranorna, är nog åtminstone delvis en följd af det sätt, på hvilket den hos dessa foglar ovanligt långa trachea beredt sig utrymme.

Familj. Gruinæ. (Tafl. VII fig. 1.)

Släaget *Grus* L. företer följande proportionsförhållanden:

<table>
<thead>
<tr>
<th>Proportion</th>
<th>Värde</th>
</tr>
</thead>
<tbody>
<tr>
<td>sternallängd</td>
<td>coracoidallängd</td>
</tr>
<tr>
<td>cristans höjd</td>
<td>half sternallängd</td>
</tr>
<tr>
<td>distal sternalbredd</td>
<td>sternallängd</td>
</tr>
</tbody>
</table>

hända är af betydelse vid ljudbildningen. — Ännu några andra smärre detaljer markera sig på exteriören till följd af trachéns intrasternala låge. Vi finna nemligen på bröstsköldens inre yta tvenne sagittalt ställda åsar, af hvilka den främre, som svarar mot den främre och större trachealvindningen, är mest prominent och börjar vid labium internum sulci coracoidei sterni samt sänker sig bakåt; den andra och mindre höjer sig öfver den inre sternalytan ungefär vid öfvergången mellan corpus och pars xiphoidalis sterni samt svarar mot den bakre och mindre vindningen.

De mot hvarandra vettande ytorna i articulatio sterno-coracoidea visa sig vid sagittalsnitt föga bugtiga, såväl i den mediala som i den laterala delen.

Familj. Rallinæ. (Tafl. VII figg. 2—4.)

<table>
<thead>
<tr>
<th>Släkte</th>
<th>Sternallängd</th>
<th>Coracoidallängd</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rallus</td>
<td>34</td>
<td>20</td>
</tr>
<tr>
<td>Ortygometra</td>
<td>40</td>
<td>24</td>
</tr>
<tr>
<td>Phalaridium</td>
<td>34</td>
<td>18</td>
</tr>
<tr>
<td>Gallinula</td>
<td>49</td>
<td>27</td>
</tr>
<tr>
<td>Fulica</td>
<td>63</td>
<td>33</td>
</tr>
</tbody>
</table>

Cristan är hos de mindre formerna hög, hos de större jämförelsevis lägre:

<table>
<thead>
<tr>
<th>Släkte</th>
<th>Cristans höjd</th>
<th>Half sternallängd</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rallus</td>
<td>12</td>
<td>17</td>
</tr>
<tr>
<td>Ortygometra</td>
<td>16</td>
<td>20</td>
</tr>
<tr>
<td>Phalaridium</td>
<td>13</td>
<td>17</td>
</tr>
<tr>
<td>Gallinula</td>
<td>15</td>
<td>24,5</td>
</tr>
<tr>
<td>Fulica</td>
<td>17</td>
<td>31,5</td>
</tr>
</tbody>
</table>

Sternum eger obetydlig distal sternalbredd hos de mindre representanterna; hos de större, hos *Gallinula* och *Fulica*, är denna ansenligare.
som vi iakttagit en något bättre utvecklad spina externa. Der spina interna finnes, visar den sig tydligt sammansatt af tubercula lab. int., hvilka bildningar qvarstå äfven hos de större formerna, ehuru hos dessa mera åtskilda från hvarandra. Såsom vi af ofvanstående måttförhållanden kunna se, är cristan temligen hög hos de mindre representanterna, men aftager i ej ovisentlig mån i höjd hos de större. Processus præcostales äro jemförelsevis långt utdragna och riktade framåt och utåt.

I den mediala delen af articulatio sterno-coracoidea förede mot hvarandra svarande ytorna någon S-formig böjning; i den laterala är crista articularis temligen djupt infalsad i sulcus coracoidalis.

Den raka, nästan jemnsmala och svaga clavicula, de spensliga scapulae, det med ovanligt djupa incisurer, hvilka temligen påtagligt synas svara mot hönsfoglarnes mediala incisurer, och jemförelsevis långa processus præcostales försedda sternum torde hos dessa, i många och mycket för öfrigt så sällsamma foglar erinra mer om Ræores, än några andra här iakttagna strukturer om Natatores.

Sammanfattning.

Vid en allmän öfverblick öfver vadarnes ordning, sådan den af Sundevall blivit framställd, finner man lätt den i allmänhet så lyckligt funna successiva grupperingen sin emellan af hithörande, i flerfaldiga hänseenden dock ganska heterogena familjer och slägen. Endast i någon mindre punkt tyckes studiet af de inre strukturförhållandena af dessa foglar fordra en annan anordning. Så t. ex. med simsnäpporna, Lobipes och Phalaropus, hvilka af flera författare ansetts böra stå i granskapet af Totanus och Tringa, hvilken åsigts riktighet den inre anatomiska bygggnaden i nästan alla hänseenden tyckes bestyrka. Att med tillhjelp endast af de skelettdelar, vi studerat, bilda oss ett omdöme om den plats de egendomliga slägtena Telmatias, Odura och särskilt Scopelax böra intaga, låter sig naturligtvis icke göra. Dock synes det oss oegentligt att genom dessa senare slägtens inskjutande skilja åt de hvarandra så påtagligt närstående Totanus och Tringa å ena sidan och Lobipes och Phalaropus å den andra. Vidare
tyckes Recurvirostra till sin struktur erinra mer om vissa bland Curroses, än om Limicolae. — Ej heller kunna vi förlika oss med den mening, att de från alla öfriga vadare så synnerligen distinkt afsgränrade familjerna Gruinæ och särskildt Ralline skola inneslutas inom samma flock som brockfoglar, trappar och andra. De förtjena förvisso en vida sjelfständigare plats inom vadarnes ordning.

Vi sade, att den successiva anordningen af hithörande slägten och arter var väl funnen. Likaså tillfredsställande synes dock icke grupperingen vara, om någon hänsyn tages till den närmare eller fjernare frändskapen emot hönseller simfoglar. Nekas kan ju icke, att många yttre karakterer hos sumphönsen erinra om dem vi återfinna hos en del simfoglar; men i det hänseendet kunna vi knappast dela Sundevalls mening, då han på ett ställe i inledningen till sitt »Försök till en naturlig indelning af foglarnes klass« säger, att man nära nog med lika full rätt kan taga hänsyn till yttre som till inre kännetecken vid en systematisering; ty för visso är exteriören underkastad vida talrikare modifikationer såväl till färg som form, än hvad handelsen torde vara med vissa af de inre anatomiska delarna, då de yttre lefnadsförhållandena trycka sig pregel. Och hvad nu sumphönsens närmaste fränder bland andra ordningar vidkommer, tyckes väl knappast något moment tala för dessa foglars slägtskap med Natatores, då deremot icke hvarje spår till likhet torde saknas gent emot hönsfoglarna. Vi kunna ju dessutom erinra om de talrika momenten i lefnadsförhållanden, som påminna om hönsfoglarna. Äfven tyckas Lundrägterna (enligt Meves) ej vara så synnerligen olikartade.

Men äfven andra omständigheter tala, såsom vi i föregående påpekat, för en konvertering af hela vadaregruppen, och bland dessa är den påtagliga likhet Flamingo eger med Cohortes 1 & 2 bland Grallatores. Denna fogel är emellertid af Sundevall skjuten djupt in i simfoglarnes system och dervid ståld såsom en förmedlande länk mellan Tubinaires och Lamellirostres, eller rättare inledande denna senare flock. Phoenicopterus har dock för visso med rätta af flertalet andra författare blifvit ståld såsom en öfvergångsform mellan vadare och simfoglar. De skelettdekar, som nu varit föremål för vår närmare granskning, visa också beträffande denna fogel, att

1 (För så vidt nemligen frågan gäller ett naturligt system.)
han i flerafaldiga hänseenden ansluter sig till Grallatores. Bland dessa senare kommer han derjemte utan gensägelse närmast Herodii och Pelargi. 1 Hvad åter angår den grupp bland simfoglar, med hvilken han skulle ega mest gemenskap, har redan Wagner påpekat, hurusom specielt i byggnaden av bröstben och skuldergördel likhet tyckes finnas med samma bildningar hos andfoglarne, om också härvid, såsom det synes oss, ofverensstämmelsen i den allmänna anläggningen är större gent emot ofvan nämnda vadaregrupper, än mot Lamellirostres.2 — Åfven kraniets mera konstanta strukturförhållanden tyckas tyda på denna gemensamhet såväl med andfoglar som med vadare. — Dock måste vi erkänna, att vadarena ega bland sina representanter alltför många som tyda på en ganska stor frändskap mellan Grallatores i allmänhet och simfoglarne, för att vi endast uti Flamingo skulle ega en förmedlande länk mellan båda dessa ordningar. Så finna vi i flera strukturdetaljer stora ofverensstämmelser mellan t. ex. brockfoglar och Longipennes, ehuruväl den allmänna anläggningen är något skiljaktig. Men finna vi med Wagner en del detaljer i byggnaden av bröstben och skuldergördel hos Flamingo, som erinra om dem hos Lamellirostres, tyckes dock här skilnaden vara ännu större, än mellan brockfoglar och Longipennes, då fråga blir om totalintryck och gemensam allmän anläggning. (Emeller-tid har Wagner hos Flamingo påpekat flera andra strukturförhållanden särskilt med afseende på viscera, hvilka antyda denna dubbla slägtskap.) — Hvarför vi i så fall icke hellre valt en del Cursores såsom ofvergångsförmer mellan vadare

1 Bland annat har Meves antydt ofverensstämmelsen i dundrägt mellan Phoenicopterus och Ardea. 2 Hos Phoenicopterus (Tafl. VI fig. 3) är scapula lång och spetsigt utdragen samt står genom sitt acromialutskott i förbindelse med clavicula och processus procoracoideus. — Os coracoideum är bredt och starkt, med väl utvecklad proc. procoracoideus. Bakom symphysis coraco-scapularis eger benet ett foramen supracoracoideum. — Clavicula är bred, föga torquerad och står med sin coracoidea del i förbindelse med acromion, hvaremot den hvilar med sin bakre rand, proc. procoracoideus och acrocoroidium, hvilken senare bildnings mediala och nedre rand den ej omfattar. Medelpunkten till den periferi clavicula beskrifver ligger ungefär vid coracoïds midt. Processus episternalis furenae är endast föga utbildad, och nyckelbenet eger en ganska tydligt framträdande processus acrocoroidalis. — Sternum företer en hög crista, hvilken maximihöjd är belägen något bakom apex, och hvilken margo longitudinalis är konvex. Bröstbenets margines laterales konvergera något bakåt, och den distala delen eger en insicur på hvardera sidan om cristan. Spina sterne externa finnes samt är från sidorna tilltryckt. Linnea interpectorales äro tydligt framträdande, de sternala bakåt starkt konvergerande.
och simfoglar, beror dels på den påtagliga överensstämmelsen i struktur mellan flertalet öfriiga vadare, med de såsom vadare mest typiska Limicole, och flertalet Cursores, dels på den ögonskenliga fränskap Longipennes ega med en del öfriiga simfoglar, dels också slutligen på den skilnad i totalintryck, som tyckes oss ovedersägligen förefinnas mellan Cursores och Longipennes; hvilka förhållanden derför låta oss i dessa båda flockar se sins emellan snarare divergerande representanter för skilda ordningar. — Att vi särskilt uppehållit oss i någon mån vid detta spörjndal, har sin orsak i den uppfattning hos en del ornitologer, bland dessa MAX FURBRINGER, enligt hvilken Longipennes och en del Cursores skulle sammanlås i en gemensam grupp, en anordning, som nödvändigtvis medför allt för stora och måhända äfven onödiga rubbningar i den förvisso lämpliga huvudindelning af fogelklassen, som redan länge varit gillad och antagen.

ORDNING VI.

Natatores. (Taf. VII figg. 5—8, VIII och IX.)

Med den uppfattning, vi ofvan framställt om specielt de grupper bland vadarefoglarna, som skulle kunna betraktas såsom förmedlande övvergångsformer till den sjette och sista ordningen, måste vi så till vida frångå Sundevalss indelning, enligt hvilken simfoglarna inledas af Longipennes, att vi följa den numera gängse anordning, som låter Lamellirostres träda i tätten. För denna senare gruppering torde också utom andra, mera rent biologiska skäl, även det förhållandet kunna gälla såsom en bestämmande anledning, att vi bland annat finna bröstben och skuldergördel så hela flocken igenom likartade, på samma gång som vi ju iakttaga i dessa foglers yttre utseende ej så liten mångfaldighet. Vi mena nemligen, att ett slikt förhållande bör kunna tyda på en mera differentierad ståndpunkt. Vi kunna i detta hänseende erinra om represen-

tanterna för den ordning, som för visso är vändig den högsta rangen inom fogelverlden, nemligen Oscines, hos hvilka vi funno en så annärkningsvärd genomgående likformighet i den inre strukturen, under det att de olika lefnadssätten hos de skilda familjerna och slägtena modifierat i större eller mindre mån det yttre utseendet. — Men även Longipennes visa sig till sina inre strukturförhållanden ganska homogena, om de också med afseende på dessa icke stå så isolerade och sjelf-

ständiga gent emot andra ordningar, till Grallatores, eller andra till Natatores hörande grupper, såsom förhållandet är med Lamellirostres. Öfriga simfoglars visa sig i större eller mindre grad ansluta sig företrädesvis till Longipennes. Dock torde tvenne grupper mer än andra afgränsa sig från másfoglarna, och dessa ärö de även ju med afseende på sina lefnads-

förhållanden så egendomliga alkorna och de årsotade sim-

foglarna (Totipalmatae).
Så äro vi sålunda i tillfälle att iakttaga inom simfoglarnes ordning fyra egentliga typer, till hvilka alla hithörande former mer eller mindre påtagligt anknyta sig, nemligen — om vi så få benämna dem — andtypen, måstypen, alktypen och de årofotade simfoglarnes typ.

Nu gifves det slutligen former, hvilka aningen genom en ögonskenlig frändskap anknyta sig till någon av dessa typer — såsom förhållandet är med Tubinares, om hvilkas plats mellan Longipennes och Totipalmata man knappast kan hyssa några tvivelsmål, — eller också genom sina strukturförhållanden erinra än om den ena, än om den andra typen, något som tyckes vara händelsen med slägtena Eudytinae och Colymbinae, om ock dessa senare tillsammans i rätt många hänseendena stå ganska sjelfständiga.

Klart är ju, att vi för en ordning, sådan som denna, hvilken innesluter så jemförelsevis väl afgränsade typer, knappast skola kunna påfinna några för hela ordningen mera genomgående och karakteristiska strukturdetaljer.

Cohors I (enl. Sundev. VI). (Lamellirostres.) (Tafl. VIII fig. 6, IX.)

Vi ha ofvan nämnt, att vi inom denna flock finna en synnerligen genomgående likformighet. De smärre skiljaktigheter, som förefinnas, äro emellertid egna att i huvudsaklig mån endast skärpa den anordning af hithörande slägten, som föreligger i det Sundevallska systemet.

Endast den ena av de två familjer, som tillhöra denna flock, representeras inom det skandinaviska området, nemligen

Familj. Anatidæ.

Den andra familjen, nemligen Phoenicopteridæ, ha vi i det föregående vidrört, i det vi uti densamma sågo en för- eningslänk mellan Herodii och Pelargi bland vadarne å den ena sidan och Lamellirostres å den andra.

Scapula är temligen långsträckt, jembred med ett acromialutskott, som står i förbindelse till någon mindre del med processus procoracoideus samt med bakranden af clavicelns coracoidala ände.
Os coracoideum är temligen kraftigt bygdt, föga pneumatiskt med oftast obetydligt afsatt processus lateralis och jemförelsevis svagt utvecklad processus procoracoideus.

Angulus coraco-scapularis är märkbart liten, varierande hos olika slägten mellan 60 och 65 grader.

De mot hvarandra svarande ytorna i articulatio sterno-coracoidea äro jemförelsevis temligen djupt infalsade i hvarandra och föreder vid sagittalsnitt genom leden en mer eller mindre tydligt framträdande S-formig krökning. Dock visa sig ledytorna något olikartade och karakteristikt byggda hos de skilda underslaglarna.

De skandinaviska slägtena Anser Biss., Brenthus Sundev. och Cygnus L. stå hvarandra närmast och markera sig dervid i någon mindre mån från öfriga till Anatidae hörande slägten. (Tafl. VIII fig. 6, IX figg. 1 och 2.) — Hos Cygnus musicus hafva vi dock att särskildt lägga märke till några egendomliga strukturförhållanden, hvilka resulterat af den ovanliga längdutvecklingen och dermed i samband stående förändringen i lage af trachea. — Följande proportioner hafva vi iakttagit:

<table>
<thead>
<tr>
<th>Släkte</th>
<th>Sternallängd</th>
<th>Coracoidallängd</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anser</td>
<td>116</td>
<td>54</td>
</tr>
<tr>
<td>Brenthus</td>
<td>85</td>
<td>48</td>
</tr>
<tr>
<td>Cygnus</td>
<td>198</td>
<td>87</td>
</tr>
</tbody>
</table>
Clavicula, hvilken hos Cygnus saknar proc. acrocraicoideus, företer hos dessa slägten en måhända något starkare kurva än hos de öfriga, och planum postpectrale eger en något större utsträckning än förhållandet är inom följande underfamilj. — Crista sterini är proportionelt hög med foga framspringande apex och spina sterini externa jemförelsevis väl utvecklad (utom möjligen hos Cygnus olor (Tafl. IX fig. 2), der vi dessutom finna lineae interpectorales sterini konvergera ganska starkt bakåt, och der en delning i cristans ursprungs-halfvor är antydd vid roten till cristans främre del — en delning, som genom trachéns intrasternala läge till huvudsaklig utsträckning fulländats hos Cygnus musicus). — Ledytorina i articulatio sterneo-cracoidæa bilda i den mediala delen en starkt svängd, liggande S-formig krökning, i den laterala en mera upprättstående likartad, churn anseeligt mindre uttalad böjning.

Hos Cygnus musicus (Tafl. IX fig. 1) ha, såsom ofvan blifvit påpekat, några särregna strukturförändringar egt rum. Så finna vi, såsom förut hos Gruinæ, hos den fullt utvecklade individen en större del af cristans spongiosa resorberad samt den långa trachea inskjuten mellan de båda lamina corticalia och på detta ställe hafta vinat sig ett hvarf. innan den efter sökt sig en väg in i thoracalhålan. Förvisso för att skydda trachea mot tryck vid kontraktion af pectoralmuskulaturen är clavicula egendomligt byggd. Den börjar sig nemligen vid sin sternala ände uppåt, följande margo anterior cristæ sterini för att med clavicula å motsatta sidan bilda en båge omkring det öfre och sidoomfånget af trachea.

<table>
<thead>
<tr>
<th></th>
<th>sternallängd</th>
<th>coracoidallängd</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vulpanser</td>
<td>97</td>
<td>51</td>
</tr>
<tr>
<td>Anas</td>
<td>93</td>
<td>52</td>
</tr>
<tr>
<td>Mareca</td>
<td>75</td>
<td>44</td>
</tr>
<tr>
<td>Nettion</td>
<td>58</td>
<td>34</td>
</tr>
<tr>
<td>Dafila</td>
<td>72</td>
<td>42</td>
</tr>
<tr>
<td>Spatula</td>
<td>75</td>
<td>44</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>cristans höjd</th>
<th>half sternallängd</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vulpanser</td>
<td>25</td>
<td>48,5</td>
</tr>
<tr>
<td>Anas</td>
<td>23</td>
<td>46,5</td>
</tr>
<tr>
<td>Mareca</td>
<td>20</td>
<td>37,5</td>
</tr>
<tr>
<td>Nettion</td>
<td>18</td>
<td>29</td>
</tr>
<tr>
<td>Dafila</td>
<td>19</td>
<td>36</td>
</tr>
<tr>
<td>Spatula</td>
<td>20</td>
<td>37,5</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>distal sternallängd</th>
<th>sternallängd</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vulpanser</td>
<td>53</td>
<td>97</td>
</tr>
<tr>
<td>Anas</td>
<td>55</td>
<td>93</td>
</tr>
<tr>
<td>Mareca</td>
<td>53</td>
<td>75</td>
</tr>
<tr>
<td>Nettion</td>
<td>33</td>
<td>58</td>
</tr>
<tr>
<td>Dafila</td>
<td>47</td>
<td>72</td>
</tr>
<tr>
<td>Spatula</td>
<td>43</td>
<td>75</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>incisura</th>
<th>sternallängd</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vulpanser</td>
<td>22</td>
<td>97</td>
</tr>
<tr>
<td>Anas</td>
<td>31</td>
<td>93</td>
</tr>
<tr>
<td>Mareca</td>
<td>28</td>
<td>75</td>
</tr>
<tr>
<td>Nettion</td>
<td>18</td>
<td>58</td>
</tr>
<tr>
<td>Dafila</td>
<td>29</td>
<td>72</td>
</tr>
<tr>
<td>Spatula</td>
<td>26</td>
<td>75</td>
</tr>
</tbody>
</table>

Margo anterior cristae sternalis företer hos dessa slägten en starkare lutning framåt och nedåt än hos föregående. Incisuraerna representeras ej sällan af foramina. Sådant är nästan det konstanta förhållandet hos *Vulpanser*, der detta foramen för
öfrigt företer en märkbar mindre bredd, och der vi derjemte iakttaga en crista, som till sin byggnad mer erimrar om dem vi sågo inom föregående underafdelning af Lamelliostræ. Spina sterni externa saknas hos intet hithörande slägte, och planum postpectorale är endast fêga uttaladt. — De mot hvarandra svarande ytorna i articulatio sterno-coracoidea likna temligen dem hos föregående slägten, men äro måhanda något mindre bugtiga.

Åfven de af oss iakttagna slägtena, tillhörande följande underfamilj **Fuligulinae (Taf. IX figg. 4—7), nemligen Fuligula Steph., Oedemia Sundev., Bucephala Baird., Pagonetta Kaup., Heniconetta Sundev. och Sommateria Leach., bilda en tydligt skild grupp för sig, om och några tyckas egna att förmedla öfvergången till den sista underfamiljen, Merginæ. Detta senare synes vara händelsen synnerligast med Bucephala.**

<table>
<thead>
<tr>
<th>Släkte</th>
<th>Sternallängd</th>
<th>Coracoidallängd</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fuligula</td>
<td>66</td>
<td>43</td>
</tr>
<tr>
<td>Oedemia</td>
<td>86</td>
<td>50</td>
</tr>
<tr>
<td>Bucephala</td>
<td>83</td>
<td>50</td>
</tr>
<tr>
<td>Pagonetta</td>
<td>91</td>
<td>45</td>
</tr>
<tr>
<td>Heniconetta</td>
<td>75</td>
<td>43</td>
</tr>
<tr>
<td>Sommateria</td>
<td>103</td>
<td>62</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Släkte</th>
<th>Cristans höjd</th>
<th>Half sternal- längd</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fuligula</td>
<td>19</td>
<td>33</td>
</tr>
<tr>
<td>Oedemia</td>
<td>22</td>
<td>43</td>
</tr>
<tr>
<td>Bucephala</td>
<td>20</td>
<td>41,5</td>
</tr>
<tr>
<td>Pagonetta</td>
<td>20</td>
<td>45,5</td>
</tr>
<tr>
<td>Heniconetta</td>
<td>22</td>
<td>37,5</td>
</tr>
<tr>
<td>Sommateria</td>
<td>27</td>
<td>51,5</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Släkte</th>
<th>Sternalbredd</th>
<th>Sternallängd</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fuligula</td>
<td>51</td>
<td>66</td>
</tr>
<tr>
<td>Oedemia</td>
<td>68</td>
<td>86</td>
</tr>
<tr>
<td>Bucephala</td>
<td>66</td>
<td>83</td>
</tr>
<tr>
<td>Pagonetta</td>
<td>55</td>
<td>91</td>
</tr>
<tr>
<td>Heniconetta</td>
<td>53</td>
<td>75</td>
</tr>
<tr>
<td>Sommateria</td>
<td>80</td>
<td>103</td>
</tr>
</tbody>
</table>
Vi finna dessa slägten markera sig genom jemförelsevis stor distal sternalbredd och en crista, hvilkens margo anterior är starkt framåtlutande. Tuberculum labii interni sulci coracoideal is sterna är spetsigt utdragen, och spina sterni externa saknas. — Oedemia och Sommateria tyckas stå hvarandra närmast (se Tafl. IX figg. 5 och 6), bland annat genom den mindre framspringande apex cristae. Pagonetta utmärker sig genom ett stort planum postpectorale, hvilket af en sternallängd på 91 mm. upptager en längd af 17 mm. — Öfriga slägten ega ett planum postpectorale, hvilket är svagt utvecklad, men dock mera framträdande och från det öfriga sternum genom en transversel ås tydligare afsatt, än det hos föregående underfamiljens representanter (se Tafl. IX fig. 4). Dock tyckes Bucephala stå den följande underfamiljen närmast, såväl genom ett jemförelsevis väl utveckladt och tydligt afsatt planum postpectorale som ock genom ett nästan konstant foramen, i stället för en incisura, ehuru väl den stora distala sternalbredden öfverensstämmer med den hos öfriga till Fuligulinae hörande slägten (se Tafl. IX fig. 7). Äfven formen å de mot hvarandra svarande ytorna i articulatio sterno-coracoidea visa sig hos detta slagte öfverensstämma med den vi finna hos följande underfamilj. — Crista articularis ossis coracoidei är djupare infalsad i motsvarande sulcus coracoidalis sterni än inom föregående underfamiljer.

Hvad slutligen beträffar de båda slägtena till underfamiljen Merginae (Tafl. IX fig. 8), nemligen Mergellus Selby och Mergus L., är afven dessa ganska typiska och väl igenkännliga med afseende på bröstben och skuldergördel. — Vi finna hos dessa, gent emot förhållandet hos den föregående underfamiljens slägten, ett temligen långdraget sternum, dervid erinrande om det vi iakttago hos Anatinae.
EMIL HOLMGREN, DE SKANDINAVISKA FOGLARNES OSTEIOLOGI.

<table>
<thead>
<tr>
<th></th>
<th>sternallängd</th>
<th>coracoidallängd</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mergellus</td>
<td>68</td>
<td>47</td>
</tr>
<tr>
<td>Mergus</td>
<td>93</td>
<td>60</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>cristas höjd</th>
<th>half sternallängd</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mergellus</td>
<td>17</td>
<td>34</td>
</tr>
<tr>
<td>Mergus</td>
<td>18</td>
<td>46,5</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>sternalbredd</th>
<th>sternallängd</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mergellus</td>
<td>52</td>
<td>68</td>
</tr>
<tr>
<td>Mergus</td>
<td>62</td>
<td>93</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>foramen</th>
<th>sternallängd</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mergellus</td>
<td>17</td>
<td>68</td>
</tr>
<tr>
<td>Mergus</td>
<td>20</td>
<td>93</td>
</tr>
</tbody>
</table>

Vi iakttogo hos slägtet Bucephala inom föregående underfamilj såsom nästan konstanta förhållanden å sternum ett foramen och ett genom en transversel ås tydligt utsatt planum postpectorale. — Samma egendomligheter återfinna vi hos denna underfamilj sida slägten, på samma gång vi iakttaga en jemförelsevis mycket låg crista med ovanligt långt framåtlutande margo anterior. — Genom den relativt större sternalbredden och högre cristan erinrar Mergellus dock i någon mån om föregående underfamilj representanter. — Den i sin mediala del vid ett sagittalsnitt triangulärä crista articularis ossis coracoidei skjuter med sin spets temligen djupt ned i motsvarande sulcus articularis coracoidalis sterni.

Cohors II (I) (Longipennes). (Tafl. VII fig. 5.)

Såsom vi vid inledningen till Natatores nämt, låter Sundevall sitt simfogelsystem börja med Longipennes. Också tyckas väl åtskilliga detaljer såväl i mäsfoglarnes yttre utseende som ock i deras inre byggnad erinra om dem, som karakterisera en del vadare; men hvad specielt sternum och skuldergördeln beträffar, visa sig dock, oafsedt de likheter i flera hänseenden, som onekligen förefinnas, den allmänna anläggningen vara så väsentligt olika, att vi aldrig gerna skulle kunna förvexla ett bröstben med dess skuldergördel, tillhörande en tärna eller en mås, med ett sådant från en
vadare, hvilken som helst.\(^1\) — Hvad beträffar måsfoglarnes öfverensstämmelse med Lamellirostres, finnes nästan intet, som skulle kunna sägas förmedla dessa båda flockar med hvarandra. De hafva fastmera med afseende på sin kroppsbygggnad differentierat sig i fullkomligt motsatta riktningar, likasåvisst som de förete högst olika lefnadsförhållanden. Men visa sig sålunda Lamellirostres i nästan alla hänseenden så olika hvarje annan fogelgrupp, finna vi deremot familjer och slägten bland öf SIGa simfoglars, som tyckas ega ej så få öfverensstämmelser med Longipennes, — på samma gång som av deras mer eller mindre egendomliga lefnadsförhållanden framgått några specifika karakterer, — om även måsfoglarna bilda en ganska väl afrundad grupp för sig. Detta har också orsakat de skilda uppfattnings af den ömsesidiga ställningen mellan några flockar bland simfoglarna och måsfoglarna, då hänsyn tagits till olika delar af de respektive foglarnes kroppsbygggnad. Då vi emellertid sökt på grundvalen af våra iakttagelser bilda oss ett omdöme i frågan om vissa simfoglars gruppering med hänsyn specielt till det sist sagda, ha vi tyckt oss komma till ett resultat, som till alla delar synes stå i samklang med den allmännast gängse meningen i berörda hänseende.

Den jemnsmala, spetsigt utdragna \textit{scapula} eger ett acromion, som står i förbindelse med processus procoracoideus och extremitas coracoidealis claviculae.

Det oftast temligen utdragna \textit{os coracoideum} eger en processus lateralis, hvilken är tydligt afsatt från benet i öfrigt och ofta försedd med en något framåt böjd spets. Processus procoracoideus är väl utvecklad, och bakom symphysis coraco-scapularis finnes i de flesta fall ett foramen supracoracoideum. Anguli mediales distales nå nästan hvarandra i sterni midtplan — såsom vi sågo förhållandet vara hos en del vadare, synnerligast bland Limicolæ —, och impressio sterno-coracoidea är temligen djup.

\(^{1}\) Vi bör dock här till erkänna, att vid en jemförelse mellan en Sterna och t. ex. en Aegialites likheten är ganska slående, men att skilnaden otvetydigt framträder, om vi valja för vår jemförelse större former, t. ex. en Larus och en Charadrius eller Hæmatopus. — Vidare hafva vi ju vid skildringen af vadarne funnit en synnerlig stor öfverensstämmelse mellan t. ex. Aegialites och de till Limicolæ hörande Tringerna, — ett förhållande, som, äfven det, är egna att låta en del med Longipennes öfverensstämmande vadare och måsfoglarne tillhöra skilda hufvudgrupper af fogelklassen.
Angulus coraco-scapularis utgör ungefär 70 grader.

Clavicula är jemnsmal, något trindad och riktad bakåt samt står i mer eller mindre nära sammanhang med den öfre randen av den fritt framskjutande och afrundade apex cristae. Extremitas coracoidalis omfattar till en del den nedre mediala randen af acrocoracoideum samt står dessutom i mer eller mindre intim förbindelse med acromion och proc. procoracoideus.

Sterni crista är temligen hög, bakåt starkt sluttande, med fritt framskjutande, något afrundad apex, och pars xiphoideal är å hwardera sidan om kammens försed med i flertalet fall tvenne, någorlunda lika djupgående inciser. Spina sterni externa är tydligt framträdande och från sidorna tilltryckt. Spina sterni interna nästan saknas. Margines laterales löpa nära nog parallelt, och lineae interpectorales sterni framträda tydligt samt konvergera bakåt, under det att lineae interpectorales cristae äro foga markerade.

De skandinaviska slägten, som räknas till hithörande europeiska familjer, Sterinæ och Larinæ, förete, såsom vi ofvan nämt, stor öfverensstämmelse sinsemellan, och nära nog endast proportionerna af de skelettdelar vi behandla äro något varierande.

Familj. Sterinæ.

Af de slägten vi varit i tillfälle att undersöka, nemligen Hydrochelidon Boie, Sterna L. och Sternula Boie, tycks det först- och det sistnämnda stå hwandra närmast genom sina, i förhållande till Sterna och familjen Larinæ, kortare ossa coracoidea.
<table>
<thead>
<tr>
<th></th>
<th>Cristans höjd</th>
<th>Half sternal-</th>
<th>Sternalbredd</th>
<th>Sternalängd</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hydrochelidon</td>
<td>12</td>
<td>15</td>
<td>18</td>
<td>30</td>
</tr>
<tr>
<td>Sterna</td>
<td>17</td>
<td>19</td>
<td>23</td>
<td>38</td>
</tr>
<tr>
<td>Sternula</td>
<td>12</td>
<td>13,5</td>
<td>19</td>
<td>27</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Incisurer</td>
<td>Sternalängd</td>
</tr>
<tr>
<td>Hydrochelidon</td>
<td>3</td>
<td>30</td>
<td>5</td>
<td>38</td>
</tr>
<tr>
<td>Sterna</td>
<td>5</td>
<td>38</td>
<td>3</td>
<td>27</td>
</tr>
<tr>
<td>Sternula</td>
<td>3</td>
<td>27</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Familj. Larinæ.

De hithörande skandinaviska slägtena, nemligen Pagophila Kaup., Chimonea Kaup., Gavia Kaup., Larus L. och Lestris Illig., stå, i likhet med förhållandet inom föregående familj, varandra mycket nära; endast det sist nämnda släget skiljer sig i någon mån från de öfriga.

<table>
<thead>
<tr>
<th></th>
<th>Sternalängd</th>
<th>Coracoidallängd</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pagophila</td>
<td>50</td>
<td>35</td>
</tr>
<tr>
<td>Chimonea</td>
<td>53</td>
<td>36</td>
</tr>
<tr>
<td>Gavia</td>
<td>38</td>
<td>22</td>
</tr>
<tr>
<td>Larus</td>
<td>75</td>
<td>53</td>
</tr>
<tr>
<td>Lestris</td>
<td>73</td>
<td>36</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Cristans höjd</th>
<th>Half sternal-</th>
<th>Sternalbredd</th>
<th>Sternalängd</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pagophila</td>
<td>22</td>
<td>25</td>
<td>32</td>
<td>50</td>
</tr>
<tr>
<td>Chimonea</td>
<td>22</td>
<td>26,5</td>
<td>30</td>
<td>53</td>
</tr>
<tr>
<td>Gavia</td>
<td>14</td>
<td>19</td>
<td>22</td>
<td>38</td>
</tr>
<tr>
<td>Larus</td>
<td>30</td>
<td>37,5</td>
<td>43</td>
<td>75</td>
</tr>
<tr>
<td>Lestris</td>
<td>28</td>
<td>36,5</td>
<td>30</td>
<td>73</td>
</tr>
</tbody>
</table>
EMIL HOLMGREN, DE SKANDINAVISKA FOGLARNES OSTEOLIG.

<table>
<thead>
<tr>
<th>incisurer</th>
<th>sternallängd</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pagophila</td>
<td>8</td>
</tr>
<tr>
<td>Chimonea</td>
<td>9</td>
</tr>
<tr>
<td>Gavia</td>
<td>5</td>
</tr>
<tr>
<td>Larus</td>
<td>9</td>
</tr>
<tr>
<td>Lestris</td>
<td>inc. med.</td>
</tr>
</tbody>
</table>

Gavia erinnar, med afseende på sina proportioner, om representanterna för föregående familj. — Lestris åter företer åfven i sina strukturförhållanden några avvikande egendomligheter. Så konvergera hos detta slägte margines laterales sterni bakåt; och pars xiphoidalis eger å hvardera sidan om crista sterni tvenne incisurer, av hvilka den laterala är nästan dubbelt så djupgående som den mediaala; och synnerligast hos de större arterna, såsom hos catarrhactes L., är t. o. m. endast en enad, bred incisur förhanden. Ossa coracoidea äro proportionelt korta och breda.

Cohors III (II) (Pygopodes). (Tafl. VII fig. 6—8, VIII figg. 1 och 2.)

De gumpfotade foglarnes flock har af Sundevall blifvit ståld närmast efter Longipennes, väl derför att, såsom Huxley påvisat, överensstämmer med dessa cohorter emellan, med afseende på vissa af kraniets basilara delar. Med hänsyn till byggnaden af de skelettdeleer vi behandla, tyckas dock få detaljer vara egna af de moderna förvandlingen i systematiska spörjningsåt i samma riktning, synnerligast som representanterna för cohors V (IV) eller Tubinares, såsom vi nedan otvetydigt skola finna, genom sin struktur och framför allt genom sitt allmänna yttre utseende kunna bättre än någon annan flock göra anspråk på platsen närmast efter Longipennes. — Hos nyare författare finna vi också i allmänhet Tubinares följa omedelbart på mås-foglarna.

Hvad åter beträffar de till Pygopodes hänförda familjerna, finna vi anmärkningsvärda skiljaktigheter i struktur mellan Alcariae å ena sidan och de hvarandra närstående, ehuru dock sins emellan ej så föga divergerande och från öfriga simfoglar ganska distinkt skilda Eudytnae och Columbinae å den andra; om de ock i någon mindre mån förete gemensamma karakterer.
Scapula är smal, mer eller mindre utdragen och hos en del representanter tydligt vinkligt böjd.

Os coracoideum är kort och eger en tydligt afsatt processus lateralis. Processus procoracoideus är svagt utvecklad och kan t. o. m. saknas.

Angulus coraco-scapularis företer hos alla hithörande former, utom Colymbinæ, ett ovanligt litet gradantal, ungefär 65 grader.

Clavicula bildar en temligen skarp kurva, hvilkens medelpunkt kan sägas ligga mer eller mindre långt bakom coracoïd's midtpunkt.

Sternum eger en jemförelsevis låg och med mer eller mindre långt framspringande apex försedd crista samt företer i sin distala del städse en eller två incisurer på hvarderasidan om kammen, hvilka dock hos några få former inom familjen Alcariæ kunna genom den distala ändens af trabeculum för- ening med den utbredda mediandelen af pars xiphoidealiskövergå till foramina. Margines laterales divergera mer eller mindre bakåt, och sternum slutar i flertalet fall, utom hos Colymbinæ, vid sin distala del med en mer eller mindre ut- bredd benplatta, hvilken utgör en ossifierad del af abdominalaponeurosen och tjener till att lemma ett fastare skydd åt abdominalviscera mot vattentryckets inverkan.

Formen å ledytorna i articulatio sterno-coracoidea äro väsentligt olika hos Alcariæ å ena sidan och Endyrinæ och Colymbinæ å den andra; likasåvisst som deras luft- och under- vattenslif äro i högsta grad skilljaktiga.

Familj. Alcariæ (Tafl. VII figg. 6—8).

De hithörande europeiska slägtena, nemligen Alca L., Uria BRIS., Cepphus Cuv., Mergulus VIELL. och Mormon ILLIG., förete följande proportionsförhållanden:

<table>
<thead>
<tr>
<th></th>
<th>sternallängd</th>
<th>coracoidallängd</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alca</td>
<td>95</td>
<td>33</td>
</tr>
<tr>
<td>Uria</td>
<td>120</td>
<td>45</td>
</tr>
<tr>
<td>Cepphus</td>
<td>77</td>
<td>29</td>
</tr>
<tr>
<td>Mergulus</td>
<td>57</td>
<td>27</td>
</tr>
<tr>
<td>Mormon</td>
<td>85</td>
<td>37</td>
</tr>
</tbody>
</table>
sidorna något hoptryckt. Lинeae interpectorales sternales löpa nästan parallellt, smygande sig nära intill margines laterales. — I den mediala delen af articulatio sterno-coracoidea förete de ledande och vid sagittalsnitt breda ytorna ett nästan plant utseende.

Slägdet *Mormon* (se Taf. VII fig. 8) avviker från öfriga slägten genom tillvaron af tvenne, ungefär lika djupgående incisurer å hvardera sidan om crista sternalis. Incisura medialis bildar dock oftast en fenestra, genom den direkta för- eningen mellan trabeculum mediale och den utbredda benplattan i sterni distala del.

Familj. Eudytinæ (Taf. VIII fig. 1).

Det enda slågte, som hit hör, nemligen *Eudytes lilig.* eger i flera afseenden öfverensstämmelse med följande familjs representanter och i någon mindre mån äfven med *Alcarie,* churuvals vid en jemförelse med sist nämnda familj många och stora skiljaktigheter framtråda:

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>sternallängd</td>
<td>coracoidallängd</td>
</tr>
<tr>
<td>128</td>
<td>45.</td>
</tr>
<tr>
<td>cristans höjd</td>
<td>half sternallängd</td>
</tr>
<tr>
<td>22</td>
<td>64.</td>
</tr>
<tr>
<td>sternalbredd</td>
<td>sternallängd</td>
</tr>
<tr>
<td>55</td>
<td>128.</td>
</tr>
<tr>
<td>incisura</td>
<td>sternallängd</td>
</tr>
<tr>
<td>26</td>
<td>128.</td>
</tr>
</tbody>
</table>

Clavicula, som eger sin största bredd vid pars coracoidalis och temligen hastigt afsmalnar mot extremitas sternalis, der den obetydliga och spetsiga processus episternalis furculæ är riktad uppåt, är tillplattad inifrån och utåt, utan att dervid förete någon torsion. Den coracoidala delen omfattar ej någon del av aerocoracid, med hvilken process den dock står i syndesmotisk förbindelse. Så också med acromion, hvaremot den stöder med bakranden af sin spets. — *Os coracoideum* är, såsom ofvan synes af proportionerna, mycket kort, i sin sternala del utbredd och tillplattad. Processus lateralis är tydligt afsatt samt något framåt böjd och processus procoracoides bättre utvecklad, än inom föregående familj. Aerocoracoid är äfven här utdraget, och bakom symphysis coraco-scapularis iakttages

Familj. Colymbinæ (Taf. VIII fig. 2).

Vi ha redan förut antydt den öfverensstämmelse, som förefinner mellan Colymbinæ och Eudytinæ. Också eger den förstnämnda familjen i byggnaden af bröstben och skuldergördel mycket gemensamt med Eudytinæ, om ock detaljer gifvas, särskilt med afseende på sternum, hvilka ej obetydligt skilja dem åt. — Åfven inom denna familj hafva vi att göra med endast ett slägte, nemligen Colymbus L., hvilket företer följande proportionsförhållanden:

<table>
<thead>
<tr>
<th>Proportion</th>
<th>Värde 1</th>
<th>Värde 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>sternallängd</td>
<td>60</td>
<td>44.</td>
</tr>
<tr>
<td>coracoidallängd</td>
<td></td>
<td></td>
</tr>
<tr>
<td>cristas höjd</td>
<td>24</td>
<td>30.</td>
</tr>
<tr>
<td>half sternallängd</td>
<td></td>
<td></td>
</tr>
<tr>
<td>sternaibredd</td>
<td>53</td>
<td>60.</td>
</tr>
<tr>
<td>sternallängd</td>
<td></td>
<td></td>
</tr>
<tr>
<td>inc. med.</td>
<td>11</td>
<td>18</td>
</tr>
<tr>
<td>inc. lat.</td>
<td></td>
<td>60.</td>
</tr>
</tbody>
</table>

Scapula är smal och svag, föga knäböjd. — Os coracoideum är, såsom ofvan synes, proportionelt långt, saknande nästan fullständigt processus procoracoideus. Processus lateralis är ej tydligt afsatt. — Angulus coraco-scapularis är större än hos någon annan familj, tillhörande Pygopodes. Den motsvarar ungefär 70 grader. — Clavicula är mot sin sternala del afsmalnande, men undergår en, i jemförelse med förhållandet inom föregående familj, temligen tydlig torsion. Processus episternalis är tillspetsad och riktad uppåt, följande

Cohors IV (III) (Totipalmatæ). (Tafl. VIII figg. 3 och 4.)

De årfotade simfoglarna bilda i fråga om sina inre strukturförhållanden en jemförelsevis väl afbrudad grupp, om vi ock i någon mindre män kunna spåra ofverensstämmelser så väl med Pygopodes, och särskilt bland dessa med slägten Colymbus, som med Tubinares, gent emot hvilka senare jemförelsen dock är påtagligast.

Af hithörande slägten, nemligen Dysporus Illig., Graculus L. och Pelecanus L., afviker det förstnämnda i några hänseenden från de båda andra, sins emellan mera likformiga slägtena:

<table>
<thead>
<tr>
<th></th>
<th>sternallängd</th>
<th>coracoidallängd</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dysporus</td>
<td>120</td>
<td>63</td>
</tr>
<tr>
<td>Graculus</td>
<td>95</td>
<td>80</td>
</tr>
<tr>
<td>Pelecanus</td>
<td>115</td>
<td>114</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>cristans höjd</th>
<th>half sternallängd</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dysporus</td>
<td>35</td>
<td>60</td>
</tr>
<tr>
<td>Graculus</td>
<td>39</td>
<td>47,5</td>
</tr>
<tr>
<td>Pelecanus</td>
<td>36</td>
<td>57,5</td>
</tr>
</tbody>
</table>
Scapula utmärker sig genom en kraftig processus acromialis. — Den del af **os coracoideum**, som uppbär scapula, reser sig öfver nivån af benets inre yta. — **Clavicula** är, utom hos Dysporus, tydligt vinkligt böjd och står hos alla hit-hörande skandinaviska slägten i direkt, fast förbindelse med apex cristae. Den sternala delen är afsmalnande, och den mer eller mindre utbredda pars coracoidalis står i artikulationsförbindelse med acrococaroidemeum och omfattar sålunda den nedre mediala ytan af denna process. Den öfriga delen af extremitas coracoidalis är mycket kort och när oftast ej fram till acromion. — **Sternum** är kort och bredt med nästan parallelt löpande margines laterales. Cristan, som är temligen låg och långt framskjutande, springer ut nära nog endast från corpus sterni. Margo posterior är å hvarandra sidan om bröstbenskammen försedd med en mera bred än djup incisur. Lineae interpectoriales sternaes konvergera starkt bakåt. — Coracoids ledande yta uti **articulatio sterno-coracoidea** företer vid sagittalsnitt i sin mediala del en stor bredd och en dubbel S-formig krökning. I den laterala delen är den temligen djupt insänkt i motsvarande sulcus sterni. — Slägten **Dysporus** (se Tafl. VIII fig. 3) afviker i flera hänseenden från de öfriga till denna flock hörande slägten. Så är ej den jemförelsevis kraftigt byggda clavicula vinkligt böjd och når med sin coracoidala del fram till acromion och nära nog också till den här relatift väl utvecklade processus procoracoideus. Scapula är temligen lång och ganska kraftig; och det jemförelsevis smala, utdragna sternum eger en tydlig spina externa. Sulci coracoidei sterna bilda mera i sagittal än i transversel riktning stående ytor, i följd hvaraf processus precostales synas ryckta ovanligt långt bakåt. Processus procoracoideus ossis coracoidei är, såsom ofvan nämnts, ganska väl utvecklad. — Hos **Graculus** (se Tafl. VIII fig. 4) företer clavicula sin tydligaste vinklighet, och det

Cohors V (IV) (Tubinares). (Tafl. VIII fig. 5.)

Stormfoglarna ega, såsom vi ofvan antydt, några öfverensstämmer med föregående flocks representanter och bilda tvifvelsutan en föreningslänk mellan Longipennes och Totipalmatä. — Slägget *Phaëton* L., tillhörande Totipalmatä, tyckes utgöra en ganska tydlig öfvergångsform mellan de mest differerade formerna af dessa båda flockar. — Det enda slägte av hithörande skandinaviska familj, *Procellarinae*, som vi varit i tillfälle att närmare granska, nemligen *Fulmarus Leach.* eger följande proportionsförhållanden:

<table>
<thead>
<tr>
<th></th>
<th>sternallängd</th>
<th>coracoidallängd</th>
</tr>
</thead>
<tbody>
<tr>
<td>sternal</td>
<td>55</td>
<td>34.</td>
</tr>
<tr>
<td>cristans höjd</td>
<td>22</td>
<td>half sternallängd 27.5.</td>
</tr>
<tr>
<td>distal sternalbredd</td>
<td>45</td>
<td>sternallängd 55.</td>
</tr>
<tr>
<td>inc. med.</td>
<td>inc. lat.</td>
<td>sternallängd 5 4 55.</td>
</tr>
</tbody>
</table>

Scapula liknar den hos Longipennes. — *Os coracoideum* är, såsom ofvan synes, jemförelsevis kort, med mindre utvecklad processus procoracoideus och med ett foramen supracoracoideum bakom symphysis coraco-scapularis. Processus lateralis är ovanligt kraftigt utvecklad och artikulerar mot sternen. — *Angulus coraco-scapularis* utgör ungefär 70 grader. — Clavicula bildar en kurva, hvilkens medelpunkt ligger något bakom midten af os coracoideum, är ungefär jemnsmal och trindad samt bredare snarare mot den sternal, än den cora-

Sammanfattning.

Förvisso bildar simfoglarnes ordning en temligen väl afgränsad grupp åfven med afseeande på de skelettdelar som utgjort föremål för vår närmare granskning, — om vi också icke kunna spåra denna genomgående likformighet, som karakteriserar t. ex. fogelklassens första ordning, och om vi också på samma gång måste erkänna, att talrika moment gifvas, som binda samman vadare och Natatores. Så i hvarandra gående tyckas dock ingalunda dessa båda ordningar vara, att de icke skulle kunna anses värda den sinesemellan sjelfständiga ställning, de sedan gammalt egt.

Stort sedt, skulle vi efter byggnaden af bröstben och skuldergördel kunna indela Natatores uti tvenne hufvudgrupper, den ena bildad af Lamellirostres, den andra inneslutande de öfriga flockarna. Af dessa hafva vi emellertid funnit den första vara alltigenom jemförelsevis synnerligen likformig, under det att den andra sammanfattar flera ganska vidt skilda
typer, om vi ock kunna skönja i den allmänna anläggningen något för dem alla mer eller mindre genomgående. I synnerhet tyckes flertalet representanter för Pygopodes med sina så skilda familjer — Alcariæ å ena sidan och Eudytinae samt Colymbinae å den andra — och Totipalmata hafta differenierat sig hvardera i sin egen riktning, om de ock i någon större eller mindre män bibehållit karaktersdrag, som erinra om deras gemensamhet dels med varandra, dels också med hela den huvudgrupp, hvilken de synas tillhöra. Till hvilka andra flockar Tubinares deremot närmast ansluta sig, torde icke behöfva vara tvifvel underkastadt, då de i så flerfaldiga hänseenden likna såväl Longipennes som Totipalmate.

Någon nämnvärdare ossifikation af lamina mediana torde vi icke hellre inom denna ordning kunna påvisa. Dock iakttaga vi inom t. ex. Longipennes en tydlig processus episternalis furculæ. Vidare finna vi samma lamina såsom membranös bildning ega endast föga utsträckning hos de grupper, der vi äro i tillfälle att iakttaga en starkare framåtutbildning af margo anterior eristæ sternalis; så t. ex. hos underfamiljerna Fuligulinae och Merginæ samt hos Totipalmate.

Der spina sterni externa nått någon vidare utbildning, står den i flertalet fall i korrelation till ligamentum sterno-procoracoideum; och hos Longipennes iakttaga vi ett ganska starkt ligamentum acrocoraco-procoracoideum, i förening med en väl utvecklad processus procoracoideus.

Hos flertalet vadare finno vi tydliga lineæ interpectorales sternales, hvilka konvergerade starkt bakåt. Så är äfven förhållandet hos måsfoglar, Tubinares och slägtena Colombus och Eudytes samt hos Totipalmate. Hos Lamellirostres deremot, äfvenså och ännu mer hos flertalet Pygopodes finna vi lineæ interpectorales sternales löpande nästan parallelt och dervid ryckta hos Pygopodes ut mot det smala bröstenets margo lateralis. — Dessa förhållanden stå naturligtvis i samband med den större eller mindre utbildningen af musculus supracoracoideus, hvilken, då den hos vissa simfoglar nått relativt stora dimensioner, torde vara det huvudsakligaste motoriska elementet vid den roende ställföryttningen under vattnet. Vi iakttaga derför denna muskel kraftigast utbildad, i samband med en mer eller mindre atrofierad musculus pectoralis thoracicus, hos Alkor och Pinguiner, hvilka för-
EMIL HOLMGREN, DE SKANDINAVISKA FOGLARNES OSTEOLGI.

flytta sig roende under vattenytan och flyga dåligt eller fullständigt sakna flygförmågan. Dessa foglar förete också, såsom vi erinr oss, nästan plana artikulationsytor i den mediala delen af articulatio sterno-coracoidea. — Colymbus och Eudytes åter, hos hvilka den ömsesidiga ställningen af lineae interpectorales sterna, ange en relativt betydligt svagare utbildning af supracoracoidalmuskeln, och hos hvilka slägten vi iakttaga en djup inkilning af os coracoideum i sulus coracoidalis sternalis, måste derför vid sina förflyttningar under vattnet förhålla sig väsentligt olika. Vi veta ju dessutom, hurusom hos dessa, i samband med den proportionellt kraftigare utvecklingen af musculus pectoralis thoracicus, flygförmågan ingalunda är dålig, och vidare, hurusom en del Totipalmate, der supracoracoidalmuskeln tyckes vara ännu svagare utbildad, endast ogerna dyka på djupet. Dock gifvas bland dessa senare de, hvilka utmärka sig genom en synnerligen stor dykskicklighet, såsom Plotus och Graculus; men dessa torde vid sitt undervattensliv mindre begagna sig af vingarna, åtminstone såsom roddredskap. — Lamellirostres deremot tyckas med fördel kunna begagna sina vingar såväl vid förflyttningar under vattnet som ock i luftens rymder, i det att de ega både musculus supracoracoidalis och pectoralis thoracicus väl utbildade.

Väl värdt att särskilt påpekas är dessutom det, synnerligen hos Merginæ, men även hos Fuligulinae, mindre hos Anatinae, genom en transversel kam från sterni xiphoidala del tydligt afsärnade planum postpectorale; något som helt säkert torde stå i direkt samband med den för dessa simdykare fördelaktigt kraftiga utvecklingen af den främre abdo-

De resultat med afseende på de skandinaviska foglarnes gruppering, till hvilka vi genom våra studier skulle kunna anse oss ha kommit, sedan vi tagit kännedom om en del även utomskandinaviska former, ha vi sökt framställa i nedanstående synoptiska tabell. Att vi uti densamma ej upprepats alla de för de skilda familjerna eller slägtena särregna struktur-förhållandena, har sin orsak deri, att vi med denna uppställning hafva velat endast framhålla på ett samladt ställe den ömsesidiga anordningen mellan de skilda grupperna, sådan vi
uppfatta densamma. Vi hänvisa i öfrigt till ofvan lemnade beskrifningar.

Granska vi tabellen, så se vi, hurusom t. ex. för Oscines finns angifna karakterer på tvenne olika håll. Den ena karakteren, hvilken är betecknad med 1, är för nämnda ordning propriet, under det att den på andra sidan om namnet stående tillkommen åven lynx (Rhamphastus, Psilopogon m. fl.). Detta senare slägts eger dock en annan strukturegendomlighet, betecknad med 2, hvilken det derjemte har gemensam med Pici, som åter genom den under detta familjenamn stående karakteren visa sig ega något samband med Oscines. Utom de under 2 angifna strukturförhållandena, är för Pici upptagen åven en annan karakter, som uteslutande tillkommen nämnda familj, stående på sidan om karakteren under 2.

De strukturer, som synts oss vara genomgående för större grupper, hafta vi betecknat med siffror; och sannafalla ju också i flertalet fall dessa afdelningar med de hufvudgrupper. hvorutri Sundevall indelat fogelklassen.

Hvarför vi ej följt den numera gängse indelningsmetoden med bokstäver och siffror, utan begagna oss af ett annat framställningssätt för att påpeka den ömsesidiga grupperingen af foglarna, sådan vi uppfatta densamma, beror derpå, att vi så mycket som möjligt hafta velat framhålla det genetiska sambandet familjer och slägten emellan.

Såsom af tabellen synes, är öfvergången mellan Oscines och Volucres ej så svårt funnen genom den påtagliga förmedlingen medelst en del spitar och hackspettarna. Så är afvenledes den stora gemensamheten mellan Grallatores och Natatores obestridlig, då vi på olika vägar från vadarnes ordning kunna leda oss in till simfoglarnes båda hufvudgrupper, — såväl till Lamellirostres som ock till Longipennes och dessa efterföljande.

Med det material, som stått oss till buds, har det dock varit oss omöjligt att bilda oss några begrepp om förmedlingen vare sig mellan Volucres och Accipitres eller mellan dessa senare och Rasores. Mellan Rasores och Grallatores tyckes det deremot, som om Ralline med Gruinæ skulle kunna stå såsom någon slags föreningslänk.
Förteckning på i denna afhandling citerade författare.

EYTON, T. C. Osteologia avium, with Supplements. London 1858—1881.
WAGNER, R. (anatomiska afhandling. i NAUMANN’s Naturgeschichte der Vögel Deutschlands).
MILNE EDWARDS jun., A. Récherches sur la faune ornithologique éteinte des îles Mascareignes et de Madagascar 1866—1879.
Förklaring på figurerna.

Taf. I.

Figg. 1 och 2. Frontalsnitt, det ena lagt i enligt det andra, genom den främre thoracaldeles hos ett embryo tillhörande Larus argentatus; — Co., det broskiga anlaget till os coracoidenum; — Sp. st. ext., det ävenledes broskiga, med sterni broskanlag i kontinuitet stående anlaget till spina sterni externa; — Cr. st., anlaget till crista sterni. — Ånnu under detta utvecklingsstadium synes den pariga anläggningen af sternum med crista och spina externa: — Pr. ep. st. furcul., den i direkt ossifikation befintliga processus episternalis furculae; — st. cor., musculus sterno-coracoidens; — s. cor., musculus supracoracoidens; — pect. thor., musculus pectoralis thoracicus.

Fig. 3. Distala delen af furcula hos ett exemplar af Cypselus apus: — cl., claricula; — pr. ep. st. furc., den mellan de båda sternala clavicularändarna inskutna och dessa ej synostoserade processus episternalis furculae.

Fig. 6 och 7. Främre inre sternalytor: — st. cor., processus sterno-coracoideus; — lab. int., labium internum sulci coracoidei sterni; — sp. st. int., spina sterni interna; — for. pneum., foramentum pneumaticum; — lab. lab. int., tuberculum labii interni.

Fig. 8. Främre yttre sternalytta: — cr. crista; — sp. st. ext., spina sterni externa; — lab. int. et lab. ext., respektive labium internum et labium externum sulci coracoidei sterni; — st. cor., processus sterno-coracoideus; — lab. lab. ext., tuberculum labii externi; — lin. st. cor., linea sterno-coracoidea; — lin. intp. st., linea interpectoralis sterni; — fos. st. cor., (fossa) impressio sterno-coracoidea sterni.

12. Proximal del af coracoid, facies interna: — acrocor., acrocoracoideum; — for. pneum., foramen pneumaticum; — cav. glen., cavitas glenoidea; — proc. proc., processus procoracoideus; — for. sup. cor., foramen supracoracoideum; — x. excavation för den å scapula befintliga tub. interarticulare (se fig. 13).

Fig. 18. Skuldergördel, facies medialis: — proc. acrocor., processus acrocoracoides; — proc. proc., processus procoracoides; — sulk. sup. cor., sulcus supracoracoides.

Tafl. II.

Fig. 1 a—e. *Turdus pilaris*: 1 d och 1 e sterno-coracoidalalen (fac. ext. åt höger).

2 a, b. *Lanius excubitor.*

3 a—c. *Upupa epops*: 3 c visande det perforeerade septum interarticulare i den främre sternaldelen.

4 a—d. *Gecinus viridis*: 4 c och 4 d sterno-coracoidalalen (fac. ext. åt venster).

5 a—c. *Iynx torquilla*: 5 b och 5 c sterno-coracoidalalen (fac. ext. åt venster).

6 a—d. *Cuculus canorus* (fac. ext. åt höger).

7 a—c. *Caprimulgus europaeus.*

Tafl. III.

1 a—f. *Cypselus apus*: 1 d skuldergörden sedd framifrån.

2 a—e. *Columba oenas.*

4 b. *Lenchyris nivea.*

5 a—f. *Ulula arvalensis*: 5 f skuldergörden sedd framifrån.

6 a—e. *Visus communis.*

Tafl. IV.

1 a—c. *Circus cyaneus*: 1 c distal sternaldel med planum postpectoral.

2 a—c. *Buteo vulgaris.*

3 a—d. *Aesalon lithofalco.*

4 a—d. *Pernis apivorus.*

5 a—e. *Pandion haliaetus*: 5 b sternum, facies interna, labium internum med for. pneum.

6 a—e. *Aquila chrysaetos*: 6 c distal sternaldel med planum postpectoral.

7 *Haliaetus albicilla*: distal sternaldel, facies externa.

Tafl. V.

1 a—e. *Tetrao urogallus.*

2 a—c. *Syrrhopus paradoxus.*
Fig. 3 a–d. *Ardea cinerea*; 3 b främre sternaldelen, facies externa, visande korsningen af coracoibenen.

4 a–d. *Ciconia alba*.

Tafl. VI.

1 a. *Platalca leucorhodia*.
2. *Ibis falcinellus*, proximal sternaldel, fac. interna.
3 a, b. *Phoenicopterus roseus*.
4 a–c. *Numenius phaeopus*.
6. *Calidris arenaria*.
7. *Pelidna alpina*.
8. *Actitis hypoleucus*.
10 a–c. *Scolopax rusticola*; 10 c distal sternaldel, fac. interna.
11 a och b. *Recurvirostra avocetta*; 11 a
12 a » b. *Strupsis interpres*; 12 a
13 a » b. *Vanellus cristatus*; 13 a
14 a » b. *Charadrius placidus*; 14 a
15 a » b. *Hematopus ostralegus*; 15 a
16. *Otis tarda*;

Tafl. VII.

1 a–c. *Grus cinerea*; a (♀) och b (♂) sagittalsnitt genom sternum visande trachëns intrasternala läge; 1 c främre Irene sternaldel med ossa coracoidea.
2 a–c. *Ortygometra crex*; 2 c. Irene distal sternalyta.
3 a. *Rallus aquaticus*.
3 b. *Phalaridium porzana*.
4 a–d. *Gallinula chloropus*; 4 b, distal furculardel med lingula.
4 e. *Fulica atra*.
5 a–d. *Larus fuscus*.
6 a–e. *Alca torda*; 6 b. Irene distal sternalyta.
7. *Uria grylle*.
8. *Mormor arctica*.

Tafl. VIII.

1 a–d. *Endytes septentrionalis*.
2 a–d. *Columbus cristatus*; 2 a. Irene distal sternalyta.
3 a–c. *Dysporus bassanus*; 3 b, 3 a, Irene proximal sternalyta med ossa coracoidea.
4 a–e. *Graculus carbo*; 4 c, Irene distal sternalyta.
5 a–c. *Fulmarus glacialis*; 5 b, yttrre proximal sternalyta med ossa coracoidea.
6 a e. *Anser albifrons*; 6 c, Irene distal sternalyta.
Fig. 1 a—c. *Cygnus musculus*; 1 a. sagittalsnitt genom sternum visande trachéns intrasternala läge.

2 a—c. *Cygnus olor*; 2 a. skuldergördel och främre sternaldel.

3 a—e. *Anas boschas*; 3 e. yttre distal sternaldel.

4. *Fuligula cristata*;

5 a—d. *Oedemia fusca*; 5 b.

5 a, inre proximal sternaldel.

6 a—c. *Somateria mollissima*; 6 a. yttre distal sternaldel.

7 a—d. *Bucephala clangula*; 7 a.

7 b, visande cristans lutning.

8 a—d. *Mergus merganser*; 8 a. yttre distal sternaldel; 8 d. visande cristans lutning.
ÖFVERSIGT

ÖFVER

SVERIGES CEPHALOPODER

AF

EINAR LÖNNBERG.

MED EN TAFLA.

MEDDELADET DEN 14 OKTOBER 1891 GENOM S. LOVÉN.

STOCKHOLM, 1891.
KONGL. BOKTRYCKERIET. P. A. NORSTEDT & SÖNER.
Då författaren till föreliggande lilla uppsats under förliden vinter på uppdrag af professor dr. Sven Loven bestämde Riksmusei rikhaltiga Cephalopodsamling, uppstod hos mig den tanken att utarbeta en fullständig katalog öfver nämnda samling, hvilken innehåller åtskilliga nya former samt många fynd af zoogeografiskt intresse. Detta har emellertid af flera orsaker ej kunnat ega rum. Jag ansåg då i alla fall lämpligt, att lemla en kort förteckning öfver de nordiska cephalopoderna samt bifoga några korta karakterer, som skulle kunna tillåta bestämmandet af de former, som möjiligen anträffas vid våra kuster. Emedan emellertid här blott afses att lemla en »nyckel» till våra former, har för korthetens skull understundom diagnoserne ej tagits så vidlyftiga, att de utesluta alla andra former. För säkerhetens skull omnämnas dock utom de skandinaviska äfven britiska och grönlandiska arter, i fall några af dessa skulle händelsevis erhållas hos oss. Med nummer utmärkas sådana arter, som erhällits i svenska farvatten. Anförandet af diagnoser torde möjiligen för någon synas överflödigt, men då den teuthologiska litteraturen är temligen vidlyftig och mycket spridd samt kanske delvis svår att erhålla, har jag trott, att det skulle understundom kunna vara af rätt stort praktiskt gagn att haflva en lätt tillgänglig uppslagsbok, med tillhjelp af hvilken en svensk bläckfisk genast kunde identifieras. Och jag går så långt, att jag anser det särdeles önskvärdt, om för de olika vertebratgrupperna dylika små öfversigter utarbetades. Därmed skulle det zoologiska studiet i vårt land i hög grad underlättas och därigenom uppmuntras. Ty för närvarande är det så staldt, att blotta bestämmandet af en art eller en form kan taga en särdeles lång och dyrbar tid för den, som ej arbetat sig in i den grupp, den tillhör. Pååknande godhetsfullt öfverseende med de ofullständigheter och brister, som möjligen vidlåda detta lilla häfte och betonande, att det ej gör anspråk på något annat än att vara en väg-
ledning vid examinering vågar författaren hoppas på värdigare efterföljare inom andra områden av den svenska evertebratfaunan.

Vid indelning av bläckfiskarnes klass hafva flera olika principer sökt att göra sig gällande. De 2 första huvudordningarna Dibranchiata och Tetrabranchiata begränsas dock allmänt lika. Till den första ordningen hör alla skandinaviska former utan undantag. Dess representanter åter, som alla ega 2 gälar och 8 likvärdiga armar eller 2 tentakler och 8 armar, hafva däremot grupperats på flera olika sätt. De karaktarer, till hvilka man i första hand måste taga hänsyn, är, armarnes antal, ögonens beskaffenhet, skalets (om det finns) konsistens och utseende samt de olika modifikationer, under hvilka hectocotylisationen uppträder. Med användning av dessa karaktarer erhåller man två tydliga underordningar:

<table>
<thead>
<tr>
<th>Octopoda</th>
<th>Decapoda</th>
</tr>
</thead>
<tbody>
<tr>
<td>Arm 8 alla likvärdiga.</td>
<td>Arm 10, af hvilka 2 äro de andra olika, tentakler eller fångstarmar.</td>
</tr>
<tr>
<td>Skal saknas eller yttre och ej deladt i kamrar.</td>
<td>Inre skal finns (vanlig), af olika slag.</td>
</tr>
<tr>
<td>3:de (högra eller venstra) armen hectocotyliserad.</td>
<td>4:de 1 eller 1:sta armparet drabbas af hectocotylisationen (ant. en arm i paret eller begge).</td>
</tr>
</tbody>
</table>

Åfven mellan dessa båda grupper är gränsen skarp, men svårare blir det att indela decapodernas underordning. D'Orbigny fäste sig uteslutande vid ögonens beskaffenhet och fick på detta sätt 2 stora huvudgrupper: Oigopsider, med öppna ögon d. v. s. med öppen hornhinna, där linsen omedelbart sköljes af det omgifvande mediet, hafsvattnet, samt Myopsider, med slutna ögon med fullständig cornea. Denna indelning i nämnda 2 »subdivisions» använder åfven Hoyle i sitt stora arbete om Challengerexpeditionens cephalopoder. Tryon åter använder samma indelning som Gray, ehuru med något olika namn, och bildar 3 grupper:

1) Decapoda chondrophora (Gray's: Chondrophora) med hornartadt inre skal, 2) Decapoda calciphora (Gray's: Sepiophora) med kalkartadt inre skal, 3) Phragmophora (Belemnophera) med kalkartadt skal med inre luftkamrar. Efters denna indelning blir dock den tredje gruppens begränsning mycket olämplig, i det den omfattar blott Spirula, som den skiljer

1) Armarnes ordning räknas från rygg- till buksidan.
ifrån dess närmaste samslägtingar Idiosepius, Sepioloidea och Sepiadarium. Åfven begreppet *Chondrophora* synes vara temligen konstladt då under detsamma inbegripes de mest skiljaktiga former. Nyligen har Norman i »Revision of British Mollusca« 1) på samma grundval som Gray sökt bilda ett nytt system med tillhjelp av karakterer hemtade från hec-tocotyliseringen. Han indelar Chondrophora i *Opistharsenia* med ryggarmarne hec-tocotyliserade och *Prostharsenia* med bukarmarne hec-tocotyliserade. Först inom denna underordning använder han Oigopsida och Myopsida i inskränkt bemärkelse som tribusnamn. 2) Härigenom komma likväl Oigopserna att slutas mycket närmare tillsammans med Loligiderna än dessa med Sepiiderna, som räknas till Sepiophora och till sektionen *Katoprostharsenia* med hec-tocotyliserings vid basen af bukarmarne. Och Sepiiderna i sin tur skiljas långt från *Idiosepii* och *Sepiadarou*, som dock enligt Steenstrup äro leurs nära slägtingar. Då alltså denna sista indelning ej heller synes riktigt lycklig, anser jag mig i det följande börja använda Hoyles indelning, enligt hvilken Decapoderna sönderfalla i huvudgrupperna Oigopsida och Myopsida, ty även om det av *Verrill* uppställda släglet Stoloteutis, som räknas till Sepiolidae och sålunda till Myopsidae skulle utgöra ett undantag från den allmänna regeln och ha öppna ögon, kan detta enda undantag ej splittra den för öfrigt naturliga gruppen, som ju dessutom sammanhålles ej allenast af karakteren hemtad från ögonens skapnad, utan även af andra såväl anatomiska som biologiska karakterer, hvilka dock ej är lämpligt att uppräkna, utan öfvergår jag efter denna inledning till uppräkning af de nordiska formerna.

OCTOPODA

8 likvärdiga armar.

Fam. *Cirroteuthidae*.

De 8 armarne utrustade med en mycket stor bindhud och bära en enkel rad af sugskålar samt på ömse sidor om den en rad af cirrer. 3) Manteln förbunden med huvudet nästan

2) I Léunis' Synopsis användes begreppen Myopsidae, Oigopsidae och Spirulidae som samordnade.
3) Häraf namnet *Cirroteuthis*.
LÖNNBERG, SVERIGES CEPHALOPODER.

rundtom ända till tratten. Kroppen försedd med 2 rundade fenor. ¹)

Sl. Cirroteuthis Eschricht.

Cirroteuthis Müller Eschricht.

Bindhuden förenar armarne ända upp till deras spetsar och är ej uppdelad i flikar.

Fam. Octopodidae.

De 8 armarne fria eller endast något vid basen förenade af en bindhud. De bära en eller två rader sugskålar, men inga cirrer. Kroppen saknar fenor.

Sl. Octopus Lamarck.

Sugskålarne på armarne i 2 rader.

1. Octopus arcticus Prosch.

(= O. Bairdi Verrill.)

Vid ögonen 2 mycket stora cirrer (d. v. s. en öfver hvarje öga), som i sin tur ofta bär utskott. Den öfriga delen af kroppen jemförelsevis slät, endast försedd med små ljusare vårtor, som äfven finnas på armarne öfversida. Armarnes inbördes längd 1, 2, 3, 4. ²) De äro jemförelsevis korta, endast omkring 3 gånger kroppslängden. Bindhuden mellan dem starkast utvecklad mellan ryggarmparet, minst vid bukarmarne och sträcker sig ungefär en tredjedel upp på armarne. Spetsen af den tredje högra hectocotyliserade armen, bildar hos ³ ett ganska stort skedformigt organ med 13—17 små tvärbalkar (enl. Steenstrup).

Denna hectocotylus-sked är hos ifrågavarande art proportionsvis betydligt större än hos O vulgaris.

¹) Till följd häraf kallas familjen äfven Pterotidae.
²) D. v. s. första paret längst det andra därnäst o. s. v., första paret = ryggarmparet.
³) D. v. s. första paret.

Riksmusei exemplar har jag jämfört med såväl Prosch's som Verrill's beskrifningar och änven med exemplar från den senare och torde sålunda kunna vara berättigad att identifiera den förres *O. arcticus* med den senares *O. Bairdi*.

Färgen är hos de exemplar, jag haft tillfälle att se, mörkt violett.

Octopus vulgaris Lamarck.

Denna för öfrigt vidt kringfridda art är hittills ej iakttagen i svenska farvatten, då den emellertid af Norman upp-
gifves vara tagen vid flera ställen utefter den engelska kusten anser jag mig börja omnämnna den här ehuru dess nordligaste uppgifna fyndort, Firth of Forth, enligt Norman synes tvivelaktig. För Danmarks fauna är den ej heller känd.

Octopus piscatorum **Verrill.**

Denna art är ännu ej funnen vid skandinaviska, danska eller engelska ¹) kuster, men då den af Hoyle räknas till »Scandinavian Region« med anledning därutf, att den iakttagits vid Färöarne, ansåg jag mig ej alldeles börja förbigå den. Dess rätta eller egentliga utbredningsområde tyckes vara vid Nordamerikas ostkust. Intressant skulle det emellertid vara, om framtida undersökningar komme att visa, att O. piscatorum hade en utbredning, som vore mera sammanställda med den, som nyss uppgafs för O. arcticus. ²)

Sl. *Eledone* **Leach.**

Sugskålarne på armarne i en enkel rad.

2 Eledone cirrosa **(Lamarck)** d'Orbigny.

Kroppsfärgen violett utan svarta fläckar. Spetsen af den hectocotylerade (3dje, högra) armen hos α visar ett organ, som motsvarar hectocotylussskeden hos Octopus, men är proportionalt kortare, djupare och gröffre bygd. Från detta organ bildas liksom hos Octopoderna en räna ned till bindhuden mellan armarne genom ett hudveck längs utsidan af den hectocotyliserade armen. De öfriga armarnes spetsar är om-

¹) Norman upptager den ej i sin »Revision of British Mollusca«.

²) Verrill beskrifier ytterligare ett par Octopusarter från Nordamerikas ostkust. En af dessa O. obesus igenkännas därpå att sugskålarne vid armarne bas endast stå i en enkel rad. Armarnes storlek i ordning 1, 2, 3, 4. En särdeles stor 3-loberad hectocotylusssked hos hanen. Ögoncirrer saknas.

Kroppsytans utseende vexlar med kontraktionstillståndet, än är den försett med talrika cirrer och värtor, än nästan slät.

Eledone cirrosa är en af de former, som inneslutas i LINNE's kollektivart Sepia octopodia. I Riksmusei samlingar finnes ett exemplar, som tillhört Vetenskapsakademiens gamla samling och bär påskriften Sepia octopodia. Det är möjligt, att detta är en originalbestämning af LINNE.

Eledone moschata (LAMARCK) LEACH.

Kroppsfärgen mera gråaktig än hos föregående art och med stora svarta flackar. Spetsen af den hectocotylerade armen är försett med längsgående hudveck och bildar ej en djup sked som hos föregående. De öfriga armarnes spetsar ha sugskålarne bortreducerade och ersatta af tväriställda bladlïka hudveck (ej som hos föregående cirrer) ordnade i 2 rader.
LÖNNBERG, SVENIGES CEPHALOPODER.

Dessa blad äro naturligtvis homologa med cirrerna hos föregående form och motsvara sidopartierna af en sugskål. Deras form är dock betydligt olika, hos cirrosa långa, koniska cirrer med utåtrigta spetsar, hos moschata platta blad med rundad spets, som ej är riktad åt sidan. Olika armar ha sugvärtorna olika mycket ombildade både hos denna och föregående art.

Så tydlig skillnaden än är hos äldre hanliga individ af de olika arterna, så kan det dock understundom vara svårt att på yngre hanar riktigt tydligt se den olika organisationen hos den ej hectocotylerade armen. Honorna skiljas på färgen. Eledone cirrosa kan understundom visa en mörkare marmorerad form, men den har aldrig sådana stora, svarta molnfläckar som E. moschata och är till färgen rent violett eller rödbrun, under det att den senares grundfärg är mera gråaktig.

Eledone moschata upptages ej af NORMAN bland de brittiska molluskerna och uppgifves af HOYLE blott för Medelhafvet.

En tredje europeisk art af detta slägte Eledone Aldrovandi Rafinesque anser jag mig också i förbigående böra omtala, ehuru den endast tillhör Medelhafvet. Den har samma ljusa oflackade kroppsfärg som Eledone cirrosa, men är betydligt mindre, smärtare och slätare. Dess hectocotylerade armsgets är en sked som hos Eledone cirrosa, likväl ej så stor och djup. De andra armarne bära också ej i spetsen till dubbelcirrer omändrade sugskålsrudiment, utan sugskålarnes samman-

1) En amerikansk art Eledone verrucosa VERRILL igenkännes på en krans af mycket stora vårtor kring ögonen samt på rygghudens storvärtiga beskaffenhet. Färgen är mörkt purpurbrun.
tryckas till tvärveck på armarne. Dessa veck är emellertid ej så stora och bladlika som hos Eledone moschata.

DECAPODA.

10 armar, nämligen 8 likvärdiga armar och 2 tentakler eller fängstarmar fästa mellan 3:de och 4:de armparet.

Underordningen Myopsida.

Slutna ögon med fullständig cornea.

Fam. Sepiolidae.

Sl. Sepiola (Rondelet) Leach.

Manteln förbunden med huvudet genom ett näckband. Ett smalt borstförmigt skal finns. Venstra ryggarmen hectocotylerad och visar sig ansvälld genom en stark utveckling av sugskålarnes stjälkar, som är sammanvunna, dessutom finns nära armens bas ett accessoriskt muskulöst organ, som kan vecklas tillsammans tufformigt eller utbredas.

3. **Sepiola scandica.** Steenstrup.

Bläcksäcken enkel päronformig (ej 3 roberad). Alla armarne med endast 2 rader sugskålar. Fenornas längd ungefär = halva mantellängden.

Af denna art eger Riksmuseum 9 bohuslänsliga exemplar, ett från Hitterön i Norge och ett gamalt med blott den allmänna uppgiften, att det är från Norge utan närmare lokalbestämning. I Göteborgs museum finnes 3 exemplar från Bohuslän nämligen från Lökön vid Grundsund, från Kallsund och Asperö. Dessa ha ursprungligen af Malm bestämts som Sepiola Rondeletii, men Steenstrup lär enligt uppgift sjelf ändrat nam-

¹) »Skal« är vissligen ett oegentligt uttryck för ett organ af stillettform och inneslutet i manteln, men då dess homologier hos andra former benämnes så och med mera skäl, har jag ej ansett lämpligt att här använda ett nytt namn. På engelska användes »shell« för Sepiola skalaet, men gladius för de med hornartad »skal«.

4. Sepiola atlantica d'ORBIGNY.

Bläcksäcken utbredd åt sidorna, 3-loberad. Bukarmarna (4:de paret) i spetsen försedda med mer än 2 rader små sugskålar. Fenornas längd utgörande mer än halva, \(\frac{3}{5}\), mantellängden.\(^1\)

Från Gullmaren\(^2\) i Bohuslän finnas insamla de Prof. LOVEN 2 Sepiolaindivider, om hvilka Prof. STEENSTRUP lär ha uttalat sin mening, att de skulle tillhöra denna art. På den ena bukarmen hos dessa båda ser man ett stycke från spetsen sugskålarne ordnade i mer än 2 rader, men den karakteren är hos dessa individ föga tydlig.

PosseLT omtalar denna art från Kattegat, Norge och Färöarne. NORMAN uppgifter den från England och GIARD från norra Frankrike.

SI. Rossia Owen.

Manteln rundt om fri, ej med nackband förenad med huvudet. Skal finnes, men är mycket smalt. Båda ryggarmarne hectocotyliserade, hvilket visar sig så, att yttre radens sugskålar delvis äro långskaftade och skaften äro nästan bladformigt tilltryckta, hvarjemte accessoriska hudveck uppträda. Armpetsarne ej försedda med någon samling af små sugskålar. \(\sigma\) har dessutom på de nedre armarne större sugskålar.

\(^2\) Vid Löken i närheten af Grundsand.

6 exemplar i Riksmusei samlingar tillhöra ovilkorligen denna typ. 3 af dessa äro svenska, nämligen ett från Koster, ett från Gullmaren och ett från Kristinebergs zoologiska station därsammastädes. De 3 andra äro från Norge och ett af dessa, är professor Lovén’s typexemplar från Finnmarken och ett annat är bestämt af Sars.

Huruvida emellertid följande form skall kunna särskiljas från denna är svårt att med bestämtastädes. Norman uppför båda, som skilda arter, men tror att de böra sammanföras, för egen del kan jag ej erkänna följande form för mer än högst en underart af denna. Huvudformen har, som ofvan skrifvits, den dorsala mantelranden bildande, som Sars säger: »angulum obtusum,1) under det att

5 b. forma *sublevis* Verrill har den dorsala mantelranden bildande en jemm linie. Färre papiller än huvudformen.

1) l. c. p. 337.
LÖNNBERG, SVENLINGS CEPAHLOPODER.

Hela kroppslängden till ryggarmarnes bas 42 mm. 45 mm. (1) 42 mm. (2) 45 mm. (2)
Huvudets längd .. 19 19 17 21
bredd öfver ögonen 19 19 8 13
Fenornas bredd räknad i kroppens transversalplan 8 10 13 19
längd räknad parallell med kroppens längdaxel 13 19

Det största af de genuina glaucopis-exemplaren mätte 80 mm. från ryggarmarnes bas till kroppens bakända.

Detta är antagligen det största kända individ af denna art, då SARS uppgifver en längd af 35 mm. och VERRILL's största exemplar hade en mantellängd af 31 mm. alltså ungefär en totallängd af 45 mm. Fenornas längd hos omtalade stora exemplar är 25 mm. och deras bredd 10 mm. Jemför man dessa mått med de ofvan gifna, tyckas fenorna hos yngre individ vara proportionalt större.

Af den form, som jag skulle vilja räkna som sublevis eger Riksmuseum inalles 5 exemplar, nämligen 3 från Väderöarne, ett från Koster, Styrsö samt ett från Kristinebergs zoologiska station. Artens båda former anträffas sålunda vid vår vestra kust.

Den är vidare fångad vid Shetlandsöarne 1) samt under namn af sublevis vid Irland.

VERRILL beskriffer sin Rossia sublevis från Nord-Amerikas östkust från Nya Skottland till 32° 33' N. bredd. Denna sistnämnda breddgrad lär dock ingalunda vara dess sydgräns då HOYLE omtalar ett fynd af densamma från Challenger-expeditionen vid Sydamerika, lat. 52° 20' S. long. 67° 39' V. Den är sålunda påträffad i 3 de mest skilda hörn af Atlanten, hvilket ådagalägger en högst egendomlig utbredning.

Rossia Hyatti. VERRILL.

Ganska lik föregående, men skiljes från den därigenom, att sugskälarne, som visserligen vid armarnes bas äro ordnade i 2 rader, mot spetsen småningom bilda 4 rader.

1) Ett från Shetlandsöarne härstammande exemplar har af JEFFREYS kallats Rossia papillifera, men sen af STEENSTRUP och HOYLE reducerats till Rossia glaucopis LOVEN.

Den tillhör eljest »New England Region« enligt Hoyles indelning, men kommer genom detta fynd äfven in på det arktiska området.

Till samma grupp af Rossior som de ofvan omtalade närmligen till dem, som hafva sugskålarne på armarne i 2 rader\footnote{1)}, hör äfven en af Steenstrup namngifven art:

Rossia Mölleri. Steenstrup.

Den lär skola skiljas från andra arter till samma grupp därigenom, att såväl hanan som honor ha mycket stora sugskålar på tentakelklubban, så stora, att de i de mellersta raderna betydligt öfverträffa armarnes klötformade sugskäl.

Denna art, af hvilken jag ej sett några exemplar, har en arktisk utbredning, i det den uppgifves för Grönland\footnote{2}).

6. **Rossia Oweni.** Ball.

Armarne bära uteftter hela deras längd sugskålarne i 4 rader. Inbördes storlek 1, 4, 2, 3. Fenorna fasta ungefär vid kroppens midt.

Denna art, som står mycket nära eller kanske är identisk med **Rossia macrosoma** (delle Chiaje) d'Orbigny, uppgifver Hoyles skola skiljas från denna på följande sätt:

Rossia Oweni.

Större, ända till 50 mm. kroppslängd.

Mera små, bredden = 55—65 % af längden.

Tentakler kortare.

Tentakel-sugskålarne något större.

Rossia macrosoma.

Ej så stor, högst 30—35 mms kroppslängd.

Tjockare, bredden 70—75 % af längden.

Tentakler längre.

Tentakel-sugskålarne ej fullt så stora.

Som man ser, äro emellertid dessa skiljaktigheter ganska obetydliga och Norman omtalar äfven, att han och Hoyles vid förnyad undersökning nästan endast kunnat fastställa den sista karakteren om tentakel-sugskålarne som hållbar och äfven denna

\footnote{1)} Denna grupp låter Norman bilda ett undersläkte med namnet Franklinia.

\footnote{2)} En annan art af samma grupp är **Rossia megaptera** Verrill den igenkännes på sina stora ögon och fenor, som sträcka sig langs hela kroppen så godt som.
vore ganska minimal, till följd härutaf kanske man skulle ha anledning att sammanslå de båda formerna till en art och blott bibehålla namnet Oweni som en beteckning för den mera nordiska formen af Rossia macro soma, hvilken senare tillhör Medelhavet. Huvudformen bör då benämnas macrosoma, emedan detta namn är det äldre.

Den bästa beskrifning af Rossia Oweni är den, som lem- nas af Lovén,1) och denna beskrifning citeras sen af efterföl- jande författare. Man måste dock taga i betraktande, att denna beskrifning hänför sig till en φ och att det gifves rätt be- tydliga olikheter mellan könen. I nämnda beskrifning står bland annat följande: »Acetabula — — — — — per series obliquas tri- et quadruplices, brevissime pedunculata (nec longe efr. l. c.), in brach. l:is subæqualia, medioeria, in 4:is, 2:is, et præsertim 3:is inæqualia, lateræibus medio duplo superantibus.» Denna sista karakter beskrifver alldeles förhållandet hos φ, men gäller ej om φ, ty hos henne är sugskålarne likstora. Att döma efter Riksmusei exemplar torde man kunna tillskrifva honan ännu en karakter, som skiljer henne från hanen nämligen en betydligt mera utvecklad bindhud mellan armarnes basaldelar.

2) Ett exemplar inköpt på Göteborgs fisktorg.

Utom exemplaren från våra egna farvatten finnes i Riksmuseum ett norskt exemplar och två yngre individ från Spetsbergen, hvarigenom artens utbredningsområde med säkerhet vidgas till den arktiska regionen. HOYLE anför den nämligen blott för den Skandinaviska regionen, men nämner Rossia macrosoma för den arktiska, dock med det tillägget i en not, att han misstänker, att här borde stå Rossia Oweni i stället. SARS upptager den emellertid ej för Norges arktiska molluskfauna. I södra och vestra Norge lär den dock finnas. Posselt omtalar två vuxna exemplar från danskt vatten och lemnar uppgift om fynd af ägg och små ungar i södra Kattegat.

Vid Skottland lär den ej vara sällsynt och förekommer även vid andra delar af de britiska öarne. Från Dublin eger Riksmuseum ett exemplar (♀), som på sätt och vis är originalexemplar.

Rossia macrosoma tillhör Medelhafsvets fauna.

En annan Rossia med sugskålarne ordnade i 4 rader, även den med arktisk utbredning är:

1) Konservator HANSSON i Strömstad har i bref underrättat förf. om att Frih. C. CEDERSTRÖM i Kosterrännan erhållit ett exemplar af denna art. Frih. CEDERSTRÖMS samling lär nu vara såld till grosshandlar BÖNSOW på Merlö vid Sundsvall.
Rossia palpebrosa Owen.

Den har armarne mera olikstora och fenorna något längre fram än föregående, alltså framom midten. Tentaklernas sugskålar mycket små, mindre än hos föregående.

Sl. Semirossia Steenstrup.

Mantelranden fri, som hos Rossia. Blott den ena ryggarmen hectocotyliserad. Armspetsarne ytterst försedda med en klase af små sugskålar, eljest bära armarne sugskålar i två rader.

Detta slägte omfattar enligt Steenstrup några få spädare byggda former, som karakteriseras af de båda sistnämnda egenskaperna, till skillnad från de kraftigare äkta Rossiorna, hvilka ha båda ryggarmarne hectocotyliserade och armspetsarne ej ombildade.

Semirossia tenera (Verrill) Steenstrup.

Fenor stora och tunna. Stora, olikstora, välaskaftade sugskålar på tentakelklubban.1) Hos hanen äro de mellersta sugskålarne på de laterala armarne 6—8 gånger större och hos honan ungefär 2 gånger större än de distala och proximala på samma armar.

1) Enligt den afbildning, som Hoyle i «Challenger» Reportlemmar af en andra hithörande art Semirossia patagonica (E. A. Smith) Steenstrup tyckes denna på tentakelklubban ha temligen små och likstora sugskålar.
fyndorternas stora afstånd, synes ej någon märkbarare olikhet vara rådande, om jag undantager att möjligen, att döma efter Verrill's figurer, hans exemplar hafta relativt något större sugskålar.

Fam. Sepiidae.

Kroppen mer eller mindre tillplattad, längs hela hvardera sidan försedd med en smal fena. Ett inre skal af kalk. Heccotocyliseringen drabbar fjerde (buk-) armpares venstra arm vid dess basala hälft, där sugskålarne åro reducerade, men armen utbredd och försedd med nätsformiga och tvårgående lister, hvarefter armens hudbräm här är starkt utvecklade.

Sl. Sepia LINNÉ s. str.

Skal temligen tjockt, baktill med en större eller mindre pigg, rostrum. En bladig hudsäck, som i kroppens bakända öppnar sig med en por saknas.

7. Sepia officinalis LINNÉ (ex parte).

Armanes sugskålar ordnade i 4 rader. Fenorna längs hela kroppen ungefär lika breda. Skal med ett temligen kort men groft upptåt böjdt rostrum. 20—30 cm.

<table>
<thead>
<tr>
<th>Sepia officinalis</th>
<th>Sepia Filliouxi</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bosporen.</td>
<td>Calabria.</td>
</tr>
<tr>
<td>Cagliari.</td>
<td>Salerno.</td>
</tr>
<tr>
<td>Messina.</td>
<td>Messina.</td>
</tr>
<tr>
<td>Venedig.</td>
<td>»Medelhafvet».</td>
</tr>
<tr>
<td>Sori.</td>
<td>Madera.</td>
</tr>
<tr>
<td></td>
<td>Lissabon.</td>
</tr>
<tr>
<td></td>
<td>Brest.</td>
</tr>
</tbody>
</table>
LÖNNBERG, SVERIGES CEPHALOPODER.

Härutaf kan man finna att Sepia officinalis med säkerhet finnes utbredd i hela Medelhavsfvet och att Sepia Filliouxi äfven går ut i »Lusitania Region«. Att den går ännu längre mot norr får man veta af Posselt, som säger: »De allerflesté af de Skaller, jeg har hatt for mig her fra Danmark, tillhörre den Form, der af Lafont benävenes Filliouxi; en ganske enkelt närmade sig till S. officinalis s.s.« Det enda exemplar, om hvilket man med säkerhet vet, att det fängats vid svensk kust, tillhör Göteborgs museum och inköptes i januari 1849 på fisktorget i nämda stad. Då jag ej sett skalet af detta individ, kan jag ej afgöra hvilken arteform, det tillhör, och jag använder därför i öfverskriften namnet S. officinalis. 1) Sannolikt skola kommande tider visa, att vi ega båda arterna liksom Danmark, där de likvisst hittills endast erhållits som skal. På Jyllands vestkust lär dock sådana kastas upp af vågorna i »hundradevis«. Åfven vid södra Norges kust drifvas stundom Sepiaskal i land. Redan LINXÉ i »Fauna suecica« skrifver om Sepia officinalis: »habitat in mari Scaniam alluente, ad cuius littora cum sabulo maris ossa sephiae quotannis ejiciuntur« och efter att hafta citerat detta i sina »Malacologiska notiser« tilllägger Lovén: »Neque alter in Bohusia«.

Norman omtalar att den huvudsakligligen förekommer vid de britiska öarnes södra kust.

Mot söder utbreder sig Sepia officinalis ända in på det vestafrikanska området.

Att LINXÉ i sin Sepia officinalis innehattade äfven Sepia Filliouxi Lafont, anar man lätt och det bekräftas ytterligare däraf, att i Riksmuseum finnes ett stort exemplar af denna form, som tillhörer gamla samlingen och antagligen bifvit beämndt af LINXÉ sjelf till »Sepia officinalis«, hvilket namn angifves af etiketten. Ett annat äldrigt exemplar, som tillhörer Adolf Fredrik's museum, finnes ibland Upsala musei samlingar. Åfven detta har troligen af LINXÉ sjelf beämndts till »Sepia officinalis«, men är äfven det, efter hvad det visserligen söndriga skalet visar, en Sepia Filliouxi Lafont.

1) Ett skal som af licentiat MUNTHE funnits uppkastadt på stranden af Väderöarne är visserligen trasigt, men tyckes dock närmast tillhöras S. Filliouxi, men de sist afsatta lamellerna ärö skadade, så att area striata därigenom förstorats.
Utom Sepia officinalis upptager Norman bland britiska mollusker två arter av släktet Sepia. Dessa äro dock former, som egentligen tillhör ett sydligare utbredningsområde, i det att Medelhavet kan anses för deras hemvist. Dessa äro:

Sepia elegans d'Orbigny.

Armarnes sugskålar ordnade i 4 rader. Fenorna tilltaga i bredd bakåt. Rostrum långt, rakt och spetsigt. 10—13 cm. Denna art, som är mindre och finare byggd än föregående samt med en ljusare hudfärg,1) upptages af Hoyle endast för Medelhavet. Men Norman anmäler den från flera ställen af Englands sydligare delar, som Cornwall, Jersey m. fl.

Sepia Rupellaria d'Orbigny.

Armarna med endast 2 rader sugskålar. Skal bakåt betydligt afsmalnande och böjd mot buksidan. 7—8 cm.

Afven denna art bebor Medelhavet, men är enligt Norman även funnen vid Northumberlands kust och norr om Irland. — Rupella är det latinska namnet på La Rochelle.

Färgen hos denna lilla nättart är något mörkare violett än hos föregående.

Fam. Loliginidæ.

Kroppen mer eller mindre cylindrisk, bakåt tillspetsad och bärande på hvar sida (i bakre kroppsändan) en mestadels triangulär fena (som med den på motstående sida bildar en rhomboidisk figur af olika utseende hos olika arter). Skal hornartadt, fjäderformigt utbredt. Fjerde venstra bukarmen hectocotylerad.

Sl. Loligo.

Fenorna inskränkta till bakre delen af kroppen, triangulära, bilda sålunda tillsammans en rhomboidisk figur. Muskelband vid tratten finnas. Fjerde venstra armen endast i spetsen hectocotylerad på sådant sätt, att mot spetsen sugskålarne aftaga i storlek och slutligen försvinna, hvaremot deras stjälkar tilltaga i storlek och blifva temligen långa koniska papiller. Spermatophorerna anbringas hos honan på buccalhudens insida (ej i mantelhålan).

1) Åtminstone väl konserverade exemplar af denna art hafta en ljus violett eller rödhun färg på ryggen. Föregående art är väl konserverad nästan svart på ryggen, men den färgen förbleknar småningom.
LÖNNBERG, SVERIGES CEPHALOPODER.

Fenorna breda, baktill sammansmältande, deras största bredd vid eller strax framför mitten, hvarigenom de tillsammans bildar en *rhomboidisk* figur med afrundade sidohörn. Tredje armen betydligt längre än fjerde. På munhuvuds flikar finnas små sugskålar. Tentaklernas midtställda sugskålar mer än *dubbelt större* än siden sugskålarne och 2—3 gånger större än tredje armens sugskålar. De midtersta tentakelsugskålarne hornringar äro blott på *ena sidan* fintandade, under det att den andra är slät (eller försedd med 4—5 små tänder). I sidoraderna äro hornringarne i tentakelsugskålarne *öfre hälfter* fintadade, i de nedre slätta.

Steenstrup har, sedan han väl skiljt denna art från den följande antydt, att vår nordiska »*L. vulgaris*« egentligen borde afsöndras som en särskild art och betecknas med namnet *breviceps*. Dr. Lenz har i sin afhandling: »Thiere der Trawemunde Bucht« försökt fullfölja denna delning. Enligt dessa båda auktorer skulle, för så vidt jag kan finna, skilnaden gestalta sig ungefär på följande sätt:

<table>
<thead>
<tr>
<th>Hufvud</th>
<th>kortare.</th>
<th>längre.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Armar.</td>
<td>kortare.</td>
<td>längre.</td>
</tr>
<tr>
<td>Manteln</td>
<td>främre dorsala är utdragen</td>
<td>en sär-bildar en trubbig ej af-</td>
</tr>
<tr>
<td>skild spets,</td>
<td>rand.</td>
<td>satt vinkel.</td>
</tr>
</tbody>
</table>

Som synes af ofvanstående äro, karaktererna temligen obe- | stämda och hufvudsakligen af relativ art. Genom jemförelse | med Verany' och Lenz' figurer har jag kommit till den uppfattningen, att våra nordiska exemplar hänföra sig närmast till | den senares, som skall vara *Loligo breviceps* Steenstrup. |

Men jemför man de båda ofvannämnda figurerne med afbildningen af *Loligo vulgaris* i d'Orbigny's stora Cephalopodarbete (Fig. 1 och 2, Pl. 8) skall man finna att denna senare i mångt och mycket, exempelvis beträffande ryggarmarnes längd jemförd med hufvudets bredd öfver ögonen, fenornas storlek och form m. m., är en komplett mellanform mellan å ena sidan Verany's¹) omnämnda figur och d'Orbigny's figur å Pl. 22 i samma arbete, hvilken är ritad af Verany, samt å andra sidan Lenz' öfvan omtalade figur. Ser man åter på en

¹) Pl. 34.
annan karakter nämligen mantelrandens dorsala vinkel framåt, skall man finna, att den är mest utvecklad hos Verany's figur i d'Orbigny's arbete och minst utvecklad å samma auktors figur i eget arbete. Detta skulle nu vara enligt Lenz ett artmärke mellan Loligo breviceps Steenstrup och Loligo vulgaris Lamarck, men huru stort värde kan man sätta på en dylik karakter under slika omständigheter? Om man utgår från den förutsättningen, att alla de nämnda figurerna äro riktiga, och vidare drager i betänkande, att de figurer, som lemnas af en italienare, afbildande former från Medelhafvet äro mest olika den nordiska formen, som Lenz visar från Östersjön och som lär öfverensstämma med Nordsjöns, samt att d'Orbigny's exemplar, som väl förskrifva sig från franska atlantiska kusten, ehuru han likväl ej nämner något därom, utgöra en mellanform mellan de båda ofvan anförda, så ligger det nära till hands att antaga, att alla formerna bilda en sammanhängande serie, hvars yttersta länkar utgöra typer för å ena sidan Loligo breviceps Steenstrup och å den andra Loligo vulgaris Lamarck, Verany. Det synes äfven, som de geografiska förhållandena väl skulle tillåta något sådant.

De relativt mätten äro dessutom ej så alldeles konstanta för Medelhafsexemplaren och de nordiska. För att ådagalägga detta, vill jag meddela följande mätt, som allesammans äro tagna på temligen stora och något så när likstora djur från de båda utbredningsområdena:

Loligo vulgaris från Gullmaren i Bohuslän:

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>35 mm.</td>
<td>155 mm.</td>
<td>$= \frac{7}{31} = 0.22 \ldots$</td>
</tr>
<tr>
<td>40 ></td>
<td>170 ></td>
<td>$= \frac{8}{34} = 0.23$ (4)</td>
</tr>
</tbody>
</table>

Loligo vulgaris från Medelhavet:

<table>
<thead>
<tr>
<th>35 mm.</th>
<th>135 mm.</th>
<th>$= \frac{7}{27} = 0.25$ (6)</th>
</tr>
</thead>
<tbody>
<tr>
<td>235 mm.</td>
<td>160 ></td>
<td>$= \frac{11}{32} = 0.34 \ldots$</td>
</tr>
<tr>
<td></td>
<td>180 ></td>
<td>$= \frac{1}{3} = 0.33 \ldots$</td>
</tr>
<tr>
<td></td>
<td>190 ></td>
<td>$= \frac{6}{19} = 0.31 \ldots$</td>
</tr>
<tr>
<td>1 exemplar från Venedig: 60</td>
<td>200 ></td>
<td>$= \frac{13}{50} = 0.26 \ldots$</td>
</tr>
<tr>
<td>Från Calabrien:</td>
<td>270 ></td>
<td>$= \frac{8}{27} = 0.29 \ldots$</td>
</tr>
<tr>
<td>(φ) 52</td>
<td>350 ></td>
<td>$= \frac{9}{35} = 0.25 \ldots$</td>
</tr>
<tr>
<td>(φ') 80</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(φ') 90</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

1) Räknad från vecket mellan ryggarmarna.
Då nu ryggarmarnes relativ a korthet hos Loligo breviceps skulle utgöra en väsentlig karakter, tyckes genom de ofvan angifna mätten verkligen dess bestånd som art i betydlig grad hotas. Ty lät vara, att visserligen de bohuslänscs exemplaren ha de kortaste armarne i proportion till mantellängden, så är dock skilnaden mellan dem å ena sidan och de mest kortarmade Medelhafsexemplaren betydligt mindre än mellan de mest kortarmade och de mest långarmade från detta sista område. Och då variationen inom samma hafsäcken är så stor hos en och samma art, torde man kunna tillåta former från skilda hav att variera något utan skilja dem till arten. Det kan ej heller invändas, att Loligo breviceps-«arten» kan finnas i Medelhavet jemte den genuina Loligo vulgaris och att exemplar af båda dessa nu mätts, ty de kortarmade och långarmade formerna äro ju redan på denna lilla lista förbundna genom mellanformer och huru mycket mera börja de ej blifta det, om man hade tillfälle att jemföra ett stort material. Men för att ådagalägga, att variationen äfven visar sig i andra afseenden än i armarnes olika relativa storlek, vill jag angifva ännu några mätt. Bredden öfver fenorna hos Corfu-exemplaren, de calabriska exemplaren, samt det sista anförda af de andra Medelhafsexemplaren uttryckes i millimeter genom följande siffror 105, 110, 100, 130 och 165 räknadt i samma ordning, som de ofvan anföras. Jemför man nu dessa mått med den redan uppgifna mantellängden får man förhållandena: $105/160$, $110/180$, $100/200$, $130/270$ och $165/330$ eller reduceradt, för att göra saken åskådligare: 0,65, 0,61, 0,50, 0,48 och 0,42. Denna variation är ju, även den, ganska beaktansvärd. Slutligen vill jag nämligen, att jag äfven funnit Medelhafsexemplar af Loligo vulgaris, som haft den fria dorsala mantelranden framåt utlöpande i en skarp afsatt spets. Hos det sist anförda exemplaret af dem, hvilkas mätt ofvan äro uppgifna, var i. ex. detta utskott ungefär 1 cm. långt och på midten 1 cm. bredt. Härigenom beröfvas Loligo breviceps ännu en af sina utmärkande egenskaper och jag tror, att den därmed även måst uppgifva sina anspråk på att kallas för art.

Af Loligo vulgaris eger Riksmuseum blott 4 svenska exemplar. Af dessa äro 1 ♂ och 1 ♀ tagna tillsammans i Gullmaren af Theel och en ♂ är fångad i Sundet.

I Göteborgs museum finnes en ♀ från Strömsstad fångad i juli, en dylik från Oroust fångad i augusti, en dylik fångad
samma årstid vid Strömstad, en ♀ från samma plats tagen åfven den i Augusti och slutligen en ♂ från Kristineberg tagen i September. Jag har ej mätt armarne på dessa, men de 2 första hanarne tycktes vara mest breviceps-lika, ♀ däremot hade jemförelsevis längre armar. Enligt meddelande af konserverator Hansson i Strömstad skall denna art då och då höstet tid erhållas på »pilk«. 1

Posselt omtalar inalles sex fynd (4 ♂, 2 ♀) af »Loligo breviceps« från olika delar af danska farvatten, däribland en hane från Limfjorden. Lenz' exemplar, som ofvan omtalats, från TrawemLinde var även en ♂. Från engelska kuster känner man ej Loligo vulgaris enligt Norman Dess förekomst i Medelhavet är redan förut omtalad. Riksmuseum eger därifrån exemplar från åtskilliga platser som Nizza, Sori, Neapel, Salerno, Messina, Venedig och Corfu etc.

9. Loligo Forbesi Steenstrup.

Lik föregående, men skiljes lätt på tentakelklubben, som har alla 4 radernas sugskålar nästan likstora, och de midstställda, som äro obetydligt större än sidovårtorna, knappt en tredje-del större än tredje armens sugskålar. Tentakelsugskälarnes hornrinnor rundtom tändade.

1) Ett slags krokfiske med en tennfisk som blänke och som drages upp och ned.
sina vandringar oftare än ♀ utom det egentliga centrum för artens utbredningsområde. Till följd af sin storlek ådra de sig mera uppmärksamhet, när de iakttagas, och komma därför oftare museerna till godo. Häri torde skälet ligga till den omständigheten, att, där få individer äro tillvaratagna, de flesta äro hanar, ehuru det andra könet i sjelfva verket är mångtaligare.

Ett bland de största kända individ af denna art är säkerligen det,1) som Posselt omtalar från Hirtsholmen. Dess mätt var enligt samme auktor följande:

<table>
<thead>
<tr>
<th>Mäte</th>
<th>Mått</th>
</tr>
</thead>
<tbody>
<tr>
<td>Totallängd</td>
<td>700 mm.</td>
</tr>
<tr>
<td>Mantellängd</td>
<td>520 »</td>
</tr>
<tr>
<td>Fenlängd</td>
<td>350 »</td>
</tr>
<tr>
<td>Fennebredd</td>
<td>280 »</td>
</tr>
<tr>
<td>Tentakellängd</td>
<td>400 »</td>
</tr>
</tbody>
</table>

För jemförelses skull lemnas här också några mätt af Riksmusei största exemplar:

<table>
<thead>
<tr>
<th>Mäte</th>
<th>Mått</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kroppslängd. 2)</td>
<td></td>
</tr>
<tr>
<td>♂ Bh. 450 mm.</td>
<td>385 mm.</td>
</tr>
<tr>
<td>♀ Bh. 450 »</td>
<td>370 »</td>
</tr>
<tr>
<td>♂ Bh. 445 »</td>
<td>415 »</td>
</tr>
<tr>
<td>♀ Bh. 330 »</td>
<td>285 »</td>
</tr>
<tr>
<td>Mantellängd</td>
<td></td>
</tr>
<tr>
<td>♂ Bh. 450 mm.</td>
<td>260 mm.</td>
</tr>
<tr>
<td>♀ Bh. 450 »</td>
<td>270 »</td>
</tr>
<tr>
<td>♂ Bh. 445 »</td>
<td>270 »</td>
</tr>
<tr>
<td>♀ Bh. 330 »</td>
<td>195 »</td>
</tr>
<tr>
<td>Fenlängd</td>
<td></td>
</tr>
<tr>
<td>♂ Bh. 450 mm.</td>
<td>90 mm.</td>
</tr>
<tr>
<td>♀ Bh. 450 »</td>
<td>80 »</td>
</tr>
<tr>
<td>♂ Bh. 445 »</td>
<td>85 »</td>
</tr>
<tr>
<td>♀ Bh. 330 »</td>
<td>60 »</td>
</tr>
</tbody>
</table>

1) Det är en ♂.
2) Räknad till basen af ryggarmarne alltså ej totallängd.
Den största bredden hos hornrino-arne i tentaklerna hos dessa exemplar var ungefär 5 mm. Hos det Passionis'ka exemplaret var samma mått 7 mm.

Den största ♂ i Riksmusei ego är från Norge och mäter 270 mm.

Loligo Forbesi uppträder egentligen på senhösten och för vintern vid Bohusläns kust enligt muntliga uppgifter, som jag upphettat på ort och ställe. Härmed öfverensstämmer, att på åtskilliga etiketter i Riksmusei samlingar står angifvet om denna art: »Fångad tillsammans med skarpsill», »Fångad tillsammans med Clupea sprattus». Strömstads museum exemplar äro fångade i November i sillvad och konservator Hansson meddelar i bref, att »arten erhålls bland vadsill under November—December månader i Strömstadstrakten». Löven skriver i »Malakologiska notiser« för »Loligo vulgaris«, som innehåller denna art, ty Loligo Forbesis var då ej uppståld; »Ad Bohusiam præsentim hieme« och Malm äfven för »Loligo vulgaris«: »fångas om vintern ofta vid våra kuster«. Göteborgs Museum har äfven åtskilliga exemplar från perioden Oktober—December.

10. Loligo media (LINNÉ).

Åfven af denna art förekommer två former, nämligen en långfenad = Loligo subulata LAMARCK (= Loligo media LINNÉ s. s.) och en kortfenad = Loligo Marmore VERANY. D'Orbigny ut talar sig för, att den förra skulle vara ♂ och den senare ♀ af samma art. Detta tillbakavisas bestämt af Steenstrup i hans epokgörande afhandling om »Hectocotyldannelsen«, i det han däremit förklarar de båda formerna vara beroende af ålder, ty till olika arter kunna de ej föras då öfvergångsformer finnas, som bilda en fullständig serie. En del senare auktorer söka emellertid att skillja dessa båda former som arter.

Underordningen **Oigopsida.**

Ögon öppna med ofullständig cornea och en utskärning eller sinus i framkanten.

Fam. Ommatostrephidæ.

De äkta Ommatostrephiderna utmärka sig vidare däri genom att tratten hvilar i en djup grop på huvudets undre sida, från hvars beskaffenhet goda art- och slägtslagram berättas.

Sl. Ommatostrephes d'Orbigny s. s.

Ehuru ännu ej i svenska farvatten någon art af detta slägte anträffats, anser jag mig dock böra anföra några former, som erhållits inom angränsande områden. Jag vill då först behandla en af de största och egendomligaste formerna nämligen:

1) Detta senare gäller dock endast om de äkta Ommatostrephiderna, men våra farvatten bebos ej af de aberranta typerna af denna familj.
OmmatostrepheS Caroli Furtado.

Tredje armparet med ett särdeles stort 3-kantigt velum (som jemförs till formen med en vaderqvarnvinge). Sammanhåtningsapparaten på tentaklerna utgöres af på den ena 3 pulviller och 4 sugskålar på den andra tvärtom. 1) Tentakellängden temligen betydlig, ungefär lika med huvudets och mantels sammanlagda längd. Den dorsala mantelranden bildar framåt en bred trubbig vinkel.

Orsaken hurrför jag anser mig ha skäl att upptaga denna art här, är att ett särdeles praktfullt exemplar från Färöarne, föräradt af professor J. G. H. Kinberg, finnes uppställt i Riksmuseum.

Ehuru arten i fråga är för vetenskapen temligen ny, i det att den beskrevs 1887 af Furtado har den dock, efter hvad Steenstrup's skarpsinnighet visat, en rätt betydlig så att säga »historisk» ålder. Redan 1661 fångades nämligen vid Catwick i Holland ett exemplar, som sedan förärades konung Fredrik III i Danmark. Detta exemplar har varit föremål för flera afbildningar och mer eller mindre vidunderliga beskrifningar, emedan det stod utställdt i »det kongelige Kunstkammer» i Köpenhamn.

Museet i Lissabon har varit nog lyckligt att på en tidrymd af ungefär 15 år erhålla ej mindre än 3 exemplar. Det sista och fullständigaste skänktes dit af dåvarande tronsföljaren Dom Carlos, till hvars ära arten uppkallats.

Riksmusei exemplar af denna art är afbildadt i 1/5 af naturlig storlek, Fig. 1 å medföljande tafla, men för att ändå närmare angifva dess storlek vill jag äfven meddela några exakta mått af samma djur. Dess längd från bakre kroppsändan till spetsen af de utsträckta tentaklerna är 140 cm., hvaraf 70—75 kommer på tentaklerna. Afståndet från basen af första armparet till spetsen af nackbrosket 14,5 cm. och derifrån till bakre kroppsändan 55 cm. Från bakre kroppsändan till mantels undre och främre rand 50 cm. Huvudets bredd öfver ögonen 13 cm. Fenornas bredd 36 cm.

1) De öfversta af dessa stå temligen nära hvarandra, ungefär på en diameters afstånd. de nedersta mera afståglade från hvarandra, på 2 diametrars afstånd.
Längden af första armparet 22 cm.
» » andra » 27 »
» » tredje » 25 »
» » fjärde » 25 »

Vid dessa sista mätningar har räknats afståndet från första sugskålen till armpetsen. Den stora, tunna hudflikens eller velum på tredje armparet är fullständigt triangulär och dess största bredd är ungefär 16 cm. Basen af denna triangel sträcker sig nästan uteftter hela armens längd. Drager man från triangulernas spets en linie vinkelrätt mot basen räknar denna ungefär armens mitt. Hudflikens eller velum på andra armparet är blott 3 cm. och på första endast 1 cm. bredt. Dessa hudflikar stödas af muskelribbor utgående från sugskålfyken i den närmaste raden. I tredje armparets velum fortsätta dessa muskelribbor af knippen af muskeltrådar, som oafbrutet fortsätta ända till kanten, gåande parallerl med varandra, korsande detta system gaa en hel mängd fina muskeltrådar likaledes sinsemellan parallell och nästan rättvinkligt mot de förra. Detta ganska väl utvecklade muskelsystem för- lånar velum en viss grad af fasthet och även förmåga af sammandragning. Tredje armparets höjd från inre ytan till spetsen af den på yttre sidan befintliga tjocka och muskulösa utvidgningen är 5 cm. Den sugskålbärande delen af tentaklernas är 33 cm. Vid basen och spetsen sitta små vårtor, men de båda mellersta radernas sugskålar nå af enhörningen med en betydande storlek omkring 14 mm. Hornringarne i dessa stora sugskålar åro rundtom betandade och 4 af dessa tänder åro större än de andra och stå mitt för hvarandra i kors (Fig. 2 a och b). De små tentakelsugvårtorns hornringar åro rundtom betandade, men deras tänder åro ofverallt nästan likstora (Fig. 3 a och b). På flera afbildningar af Ommatostrephes-tentakler från olika arter visar Stenstrup, att betandningen i de stora sugskålarne erbjuda den ofvan omnämda egendomligheten med 4 tänder, som åro korsvis ställda, större än de andra. Detsamma har jag ofven iakttagit på en del konserverad material, det skall möjligen i en framtid därför visa sig, att denna egendomlighet är gemensam för hela familjen eller åtminstone flertalet af denna representanter.

1) Ritade i 3/4 af naturlig storlek.
2) De Ommatostrephagtige Bläksprutters inbyrdes Forhold p. 81, Fig. 1, 2, 3, 4, 6.
LÖNNBERG, SVERIGES CEPHALOPODER.

Armarne bära äfven de största sugskålarne på sitt midtparti. Sugskålarne äro på alla armarne ordnade i 2 alternerande rader, men på ryggarmarne trängas dessa rader mera ihop än på de andra, så att en half tendens till enradighet visar sig. De största sugskålarne finnas på andra armparet, hvarest deras diameter uppgår till 11 mm. Dessas hornringar äro rundtom betandade med den mellersta tanden på den högreidanstörre än de andra (Fig. 4 a och b). 1 den yttre tredjedelen af armarne äro däremot hornringarnes låga kant slät och endast den höga tundad (Fig. 5 a och b). Sugskålarne med denna senare konstruktion sträcka sig på fjerde armparet ned ända till midten af armen.

Trattgropens midtveck äro 7 (8) och omfattas af en stor ficka. På sidorna ser man 2 större och ytterst en liten ficka. (Fig. 6 naturlig storlek).

Till sist vill jag som en egendomlighet anmärka, att detta ofvan beskrifna exemplar har häftapparaten på tentaklerna, bestående af 4 pulviller och 4 däremot svarande sugskålar med slät hornring. På högra tentakeln sitter längst ned en sugskål och på den venstra en pulvill. Furtado's exemplar har på ena tentakeln 4 sugskålar och 3 pulviller, på den andra tvärtom.

Ommatostrephes pteropus STEENSTRUP.

Till denna form tror STEENSTRUP att Ommatostrephes eblance (BALL) bör föras, och då denna upptages i NORMAN'S Revision för Irland, ansåg jag detta bör anmärkas här.

Ommatostrephes Bartrami (LESUEUR) d'ORBIGNY.

Tredje armparets velum ej så starkt utveckladt som hos föregående. Sammanhäktningsapparaten består af 3 pulviller

Sl. Todarodes Steenstrup.

Trattgropen försedd med veck. Tentaklerna sakna sammanhäktningsapparat, men bära sugskålar ej blott på klubban utan även på skaften, i spetsen åro de ordnade i 4 rader. Tredje armparet, liksom de andra armarne, sakna velum och bära ej heller i yttre hälften tätt gyttrade, små sugskålar.

11. **Todarodes sg-gittatus** (LAMARCK) **Steenstrup.**

Tentaklerna bära sugskålar nästan utefter hela sin längd. (Armarnes sugskålar ha 7 tänder i sina hornringar, af hvilka den mellersta ofta är större än de andra).

Posselt omtalar danska exemplar från flera håll, som Jyl-lands vestkust, Fredrikshavn, Læsø och till och med så långt ned som från Lilla Bält.
Sl. Illex Steenstrup.

Trättygropen är slät, utan veck. Tentaklerna, som endast bära sugskålar på klubban, men ha sugskälarns i spetsen ordnade i 8 rader, sakna sammanhållningsapparat. Armarna sakna velum och bära ej heller gyttrade små sugskålar på sin yttre hälft.

Illex Coindetii (Verany) Steenstrup.

1) Enligt Verrill avfiker Illex Sloanei Gray från Tasmania från de öfriga båda arternas inom släktet derigenom att den har sugskälarna i tentaklernas spetsar endast ordnade i 4 rader.

2) Jag vill påpeka, att denna hane måste anses för kort och tjock, som hanen af Illex Coindetii från Medelhafvet, ej som Verrill skriver smärtare än honan.
Till Ommatostrephidernas familj räknas stundom en serie former, som sammanfattas under slägtnamnet *Architeuthus* Steenstrup. En af dessa omnämnas såväl af Possett som af Norman, och jag anser mig därför ej börja förbigå den. Churu jag ej haft den förmånen att i litteraturen finna någon original-diaognos, utan Steenstrup har endast lenmat ett namn, ej någon beskrifning. Den ifrågavarande arten är:

Architeuthus monachus Steenstrup.

Dessa former, som bland sig räkna de största arterna inom bläckfiskarnes klass, åro i allmänhet ofullständigt kända och beskrifna, då man oftast endast erhållit fragment af strandade djur. Den Architeuthus-art, som möjligens skulle kunna an-träffas i svenska farvatten, är den ofvan nämnda *A. monachus* Steenstrup. Norman omtalar flera fynd af jättelika bläckfiskar, som skulle tillhöra denna art, från Shetland och andra delar af det brittiska riket. En af dessa hade tentakler af 30 fots långd och tentakelklubban bar 4 rader sugskålar. De meller-sta af dessa rader räknade 14 sugskålar协调发展, hvilka hade en diameter af ungefär en tum. De yttre raderna bestå lika ledes af 14 sugskålar, men deras diameter är ej mer än hälfen
af de förras. De senares hornningar buro omkring 28 tänder. Ofvanför och nedanför dessa större sugskålar funnos talrika smärre som delvis hade slåta hornningar liksom de få som sutto på skaften. En arm af samma exemplar var 8 fot lång.

Posselt omnämner 2 danska fynd af denna art samt dessutom andra från Island och Färöarne. Alla hittills omtalade fynd förskrifva sig från jemförelsevis sen tid och från detta århundrade. Men redan för lång tid sedan har man iakttagit kolossala bläckfiskar, som ansetts som vidunder och antagligen gifvit anledning till många sagor.1)

Åfven på numera svenskt område har i en långt förgången tid ett dylikt vidunder anträffats, nämligen vid Malmö i mitten af 1500-talet, och detta anses af STENSTRUP ha varit en representant för arten Architeuthus monachus.

I Atlanterhavets djup dväljas andra arter af detta egendomliga släkte och flera former, som vräkts upp på New Found-lands kust, äro beskrifna af VERKILL.2)

Fam. Onychiidae.

Sl. Onychoteuthis Lichtenstein.

1) Om *Kraeken* och *Draugen* i Norge t. ex.

12. Onychoteuthis Banksi (Leach) Férussac.

Armarnes storleksordning 2, 3, 4, 1.

Denna art är den bläckfisk, som oftast hemföres af sjöfarande, emedan den ofta vid sina luftspräng kastas upp på däck af fartyg.

Sl. Gonatus Gray.

Armarn med 4 rader sugskålar på bukarmarne, men på de andra armarna äro de 2 mediana raderna förvandlade till hakar, under det att de laterala äro vanliga sugskålar. Tentaklerna sakna den för föregående slägte omtalade runda gruppen af pulvillen och sugskålar vid klubbans bas, men har i dess ställe längs skaften små sugskålar och pulviller, som kunna sammanhärta dem utefters hela deras längd. Denna anordning fortsättes längs ena sidan af klubbans och utbildas där till en starkare häftapparat bestående af en rad alternande sugskålar och pulviller till ett antal af ungefär sex af hvardera slaget. Tentakelklubban är för öfrigt beväpnad med ett stort antal små sugskålar samt vanligen 5 hakar, af hvilka 2 (eller 3) äro mycket stora och de andra mycket små. Manteln är mycket

1) Den mest liknande europeiska arten är Ancistroteuthis Lichtensteini (FÉR) Gray, som dock har svansen och fenan betydligt mer utdragna i en spets bakåt samt armarnes ordning 4, 3, 2, 1.
LÖNNBERG, SVERIGES CEPHALOPODER.

tjock och muskulös. Fenan, som sträcker sig utom kroppens bakre spets, är på sidorna afrundad.

Gonatus Fabricii (Lichtenstein) Steenstrup.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>125 mm.</td>
<td>100 mm.</td>
<td>42 mm.</td>
<td>35 mm.</td>
<td>4 mm.</td>
</tr>
</tbody>
</table>

Slutligen förvaras ytterligare i Riksmuseum ett ovanligt stort exemplar, som vid storm uppkastats på Grönlands södra kust i augusti 1861. Tyvärr saknar dock detta individ fenor, ehuru det föröfrigt är väl bibehålet. Dess mått är följande:

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>265 mm.</td>
<td>250 mm.</td>
<td>120 mm.</td>
</tr>
</tbody>
</table>

Till samma art hör även ett litet illa konserveradt exemplar från Davis Strait.

Fam. Cranchiidae.

Manteln fast förenad med huvudet på 3 ställen i rygg-linien och på hvar sida om tratten. Hvarken armar eller ten-
takler bära hakar. Manteln ej tjock och muskulös, som hos föregående familjer, utan tunn, hudartad, men fast till sin konsistens.

Af denna familj äro ej några arter iakttagna vid svenska, norska eller danska kuster, men då en art är nått i närheten af Irland, anser jag mig böra anföra den.

Sl. Taonius Steenstrup.

Taonius hyperboreus Steenstrup.

Arten i fråga är känd från Nordatlanten nordvest om Irland, vid Nordgrönland, Halifax och Nova Scotia.

Utom den nämnda fängas i norra Atlanten ofta följande arter till denna familj:

1) af **Sl. Cranchia Leach**

som utmärker sig genom sin korta, liksom uppblåsta kroppsform och sin korta, tvärställda fena.

Cranchia scabra Leach.

Manteln tätt besatt med hårda, stjernlika taggvårtor. Utbredt öfver hela Atlanten.

Cranchia Reinhardii Steenstrup.

Cranchia megalops Prosch.

Manteln slät utan taggar. Ögon mycket stora. Atlanten vester om Färöarne.

2) af **Sl. Leachia Lesueur.**

Leachia ellipsoplera (Adams & Reeve).

Kroppen mycket längsträckt, bakåt utdragen. Fenorna bilda en tvärställd ellips och äro bättre utvecklade än hos föregående släkte. Tentaklerna plåga alltid vara affallna.
Förteckning öfver den för kändedomen om de nordiska cephalopoderna vigtigaste literaturen.

HOYLE. Report on the Cephalopoda collected by H. M. S. Challenger during the years 1873—1876, Vol. 16, Part 1, 1886.

POSSelt. Cephalopoda, Det videnskabelige Udbytte af Kanonbaaden »Hauchs» Togter 1883—86. Kjøbenhavn 1889. II.

SAUNS. Mollusca Regionis Arcticæ Norvegiae, Kristiania 1878.

Professor A. E. Verrills to nye Cephalopodslægter Sthenoteuthis og Lestoteuthis, ibidem 1881.

Til Klaring af vore Kundskaber om de forskjellige Blæksprutte-Typers Udviklingshistorie, ibidem 1881.

En ny Blæksprutteslægt: Trachelotethis, ibidem 1881.

Nota Teuthologicæ, 2 Moroteuthis Verr (1881) = Lestoteuthis Verr p.p. 1880 = Ancistroteuthis Gray (1849); ibidem.

Nota Teuthologicæ, 4, Plectoteuthis grandis Owen 1881 = Architeuthus sp. Strp; ibidem.

Nota Teuthologicæ, 5, Xiphotethis ensifer Owen 1881. ? = Ommastrephes pteropus Strp etc.; ibidem 1884—85.

Nota Teuthologicæ, 6, Species generis Sepiolæ Maris Mediterranei; ibidem 1886—87.

Nota Teuthologicæ, 7, Sepioloidea d'Orb. 1875; ibidem.

Nota Teuthologica 8, Ommastrephes Caroli Furtado 1887; ibidem.

Figurforklaring.

Fig. 1. *Ommatostrephes Caroli* FUKTADO i $\frac{1}{3}$ af naturlig storlek.

Fig. 2. Hornring af en af de största tentakelsugskålarne, a uppifrån, b från sidan, i $\frac{3}{2}$ af naturlig storlek.

Fig. 3. Hornring af en liten tentakelsugskål, a uppifrån, b från sidan. Förstoring som föregående.

Fig. 4. En hornring af en större armsugskål, a uppifrån, b från sidan. Förstoring som föregående.

Fig. 5. En hornring af en sugskål från yttre tredjedelen af en arm, a uppifrån, b från sidan. Förstoring som föregående.

Fig. 6. Trattgrop i naturlig storlek.
ICHTYOLOGISCHE NOTIZEN

VON

EINAR LÖNNBERG.

MIT EINER TAFEL.

MITGETEILT DEN 14 OKTOBER 1891 DURCH F. A. SMITT.

STOCKHOLM, 1891.
KONGL. BOKTRYCKERIET. P. A. NORSTEDT & SÖNER.

2) Ein von MELA’s Exemplaren ist zum Zool. Mus. der Univ. zu Upsala geschenkt, dessen Kopf in Fig. 2 abgebildet ist.

Es ist natürlich, dass, als die Glacieren mehr und mehr sich zurückzogen und das Klima mehr und mehr temperirt wurde, nicht alle Plätze gleich günstige Existenzbedingungen zum Erhalten der ursprünglichen arktischen oder glacialen Fauna des Meeres darbieten konnten. Tiefere Becken, wo das Wasser sich nicht so bald während des Sommers erwärmen konnte, bewahrten die niedrige Temperatur besser, und da diese eine sehr grosse Rolle spielt, ist es natürlich, dass in solchen Tälern des Meeresbodens, wo dies der Fall war, die arktischen Formen sich sammeln mussten und sogar diejenigen Tiere, die normal zu der Litoralfauna zugehörten, hinabsteigen. Später als die Tiere so zu sagen sich akklimatisiert hatten, konnten sie wieder gegen das Ufer wenigstens im Winter aufsteigen. Hiervon kann man einsehen, dass gewöhnlich die Reliktfauna in den Tiefen zu suchen ist und dass sie in solchen Gegenden, wo sie existirt, sich im Winter mehr sichtbar machen soll. Dass das letzte in Bohuslän der Fall ist, habe ich schon a. a. O.\(^2\) gezeigt, und da es sich hier um Fische handelt, will ich nur noch einmal hervorheben, wie z. B. während des Winters Liparis in Bohuslän viel häufiger sich mit dem Schleppnetze fangen lässt als im Sommer. Weiter verweise ich auf die ichtyologische Litteratur, in welcher man finden kann, dass die arktischen Fische an unserer Westküste meist im Winter gefangen werden. Das letzte, gestehe ich doch, kann auf

In Betreff anderer Exemplare dieser Fischspecies, die in solchen Gegenden, wo die Art sporadisch und als Relictform vorkommt, beobachtet sind, kenne ich nicht die Jahreszeit ihres Fangens, aber einige von ihnen stammen von einer verhältnismässig beträchtlichen Tiefe, wie das Petersen'sche Exemplar, das mit dem Trawl von einer Tiefe von 25 Faden aufgezogen ist, und ein anderes Exemplar von der Ostküste Schottlands wurde in einer Tiefe von 40 Faden gefischt. Es ist annehmbar, dass in diesen Tiefen die Temperatur nicht so besonders hoch gewesen ist.

Man kann sich aber auch denken, dass die ursprünglich arktischen Tiere sich allmählich akclimatisieren konnten und von den grösseren Tiefen,\(^2\) wohin sie einmal zurückgedrungen wurden und wo sie sich beibehalten konnten, wieder emporsteigten, sobald die Naturverhältnisse mehr ruhig wurden, und dahin strebten wieder Litoralformen, wie sie vom Anfang an waren, zu werden, sie müssten doch fortwährend meist in der Nähe der tieferen Bassinen zu treffen sein, da diese die Centren ihrer neuen Verbreitungsbezirke ausmachen. Es ist daher interessant zu finden, dass z. B. an den Inseln Ulföar eine sehr grosse Tiefe (mehr als 200 M.) zu finden ist, in der Nähe von Hogland ist es auch ein tiefes Becken von 75 M., und im Fjord Bråviken\(^3\) beträgt die Tiefe 40 M. Die dänischen Indi-

\(^1\) Ein zweites von diesen aber ist im Juni gefangen.
\(^2\) In der Ostsee mussten die arktischen Meerestiere auch des Salzgehaltes wegen die Tiefen aufsuchen, weil die oberen Wasserlagen zu brackig oder sogar zu süß wurden.
\(^3\) Die Vorfahren des Bråviks-exemplares haben möglicher Weise auch in der sehr grosse Tiefe an Landsort bis jetzt ausgedauert.
LÖNNBERG, Ichthyologische Notizen.

viduen gleichwie das Kielerexemplar müssen in späterer Zeit zu ihren erwähnten Fundorten hingekommen sein, denn sie sind in einer Region angetroffen, die wahrscheinlich eine Hebungsperiode durchgelaufen ist. Ihre Vorfahren konnten aber möglicherweise in der Bornholms-Tiefe zurückgeblieben und später davon aufgestiegen sein. Wenigstens ein von den in Bohuslän gefangenen Lumpenexemplaren stammt aus dem Fjord Gullmaren, in welchem man eine grosse Tiefe von mehr als 100 Faden trifft, welche Tiefe auch andere Reliefformen birgt. Wo die zwei anderen Bohuslänischen Exemplare gefangen sind, kenne ich nicht näher. Ihre Stammeltern hatten sich aber entweder in der Gullmartiefe oder in der tiefe Rinne in Kattegat beibehalten können.

Wie ich vom Anfang betonte, ist der in Rede stehende Lumpenus interessant nicht nur des Fundortes wegen sondern auch dadurch, dass er monströs gebildet ist. Sein Bild Fig. 1 zeigt besser als eine Beschreibung sein Aussehen und ich teile auch der Deutlichkeit wegen das Bild eines normalen Exemplares (Fig. 2) mit, auf dass man vergleichen können mag. Ich will doch auch durch das Text einige nähere Angaben mitteilen. Die gesamte Körperlänge des Tieres beträgt 131 Mm. Die Höhe des Körpers an der Basis der Bauchtiossen ist 10 Mm. Das Verhältniss zwischen Höhe und Länge des Körpers schwankt bei dieser Art von $\frac{1}{12} - \frac{1}{20}$, hier ist er $\frac{1}{13}$, also ist das betreffende Exemplar verhältnismässig kurz und dick. Der Abstand von der Schnauzspitze zum Anus pflegt auch zu schwanken, beträgt aber gewöhnlich etwas mehr als ein Drittel der Körperlänge. Beim Lumpenus von den Inseln Ulföar ist der betreffende Abstand 51 Mm. also $\frac{5}{13}$ der Körperlänge. Die Länge des Kopfes von der Spitze des Unterkiefers zur hintersten Spitze des Kiemendeckels misst 22 Mm. also ungefähr $\frac{1}{6}$ der Körperlänge. Diese letzte Zahl ist vom Interesse, weil es zeigt uns, dass, wenn durch die Deformität der Kopf abgekürzt ist, so muss doch auch der Körper eine entsprechende Veränderung gelitten haben, da bei älteren Individuen der Kopf $\frac{1}{8} - \frac{1}{10}$ und bei jüngeren $\frac{1}{5} - \frac{1}{7}$ von der Körperlänge zu messen pflegt. Es kann auch eine Bestätigung einer Annahme von Prof. Lilljeborg, die er in seinem treffli-

1) Die grösste Höhe des Körpers beträgt 10 Mm., an der Basis der Schwanzflosse 3 Mm.
Prof. Lilljeborg findet es nämlich wahrscheinlich, dass die Fische dieser Art, ein analoges Verhältniss zu dem bei den Heringen darbieten sollten und also die Ostsee-exemplare verhältnissmässig grössere Köpfe haben dürften als diejenige aus der Nordsee.

Die Farbe des hier behandelten Exemplares ist rötlich gelb mit dunklen quergestellten Flecken, von denen ein sehr deutlicher hinten auf dem Kiemendeckel zu finden ist. Auch die Stachel der Rückenflosse sind dunklerer Farbe.

Solche Mopsformen von Fischen, wie die oben beschriebenen, ist keine solitäre Erscheinung, obgleich bis jetzt von

1) p. 510.

Augendiameter der Mopsform 10 Mm., eines Normalen 8 Mm.
Körperlänge 150 » 165 »

Der Körper scheint auch bei dieser Mopsform mehr kurz und gedrungen zu sein.

Bei einem anderen Exemplare derselben Art, auch von Dr. Schagerström eingesammelt, ist die Profilkontur der Stirn mehr gebogen als normal ist und der Kopf erscheint ein wenig

1) Die Länge des Unterkiefers ist 21½ Mm. und bei einem 15 Mm. längeren Exemplare etwa ½ Mm. kürzer, was sogar das entgegengesetzte zu beweisen erscheint.
zusammengedrückt, die Kiefer haben doch ihre Grösse beibehalten.

Der in Fig. 4 abgebildete Fischkopf schliesslich gehört zu einem *Anquillidë* aus Savannah, den ich nicht seiner Deformität wegen ganz sicher zu bestimmen vermag. ¹) Bei diesem ist die Reduction noch viel weiter gegangen, indem man bei ihm weder Zwischen- noch Oberkiefer entdecken kann, und die Ethmoidalgegend ist so vollständig wegreduziert, dass nicht einmal einige Hart-teile von vorne die Orbiten schützen, und Nasenlöcher kann man auch nicht wahrnehmen. Der bezahnte ²) Unterkiefer ist ziemlich viel aufwärts gerichtet gleichwie um einen entsprechenden Oberkiefer aufzusuchen. Im Winkel zwischen den beiden Unterkieferästen trifft man eine fleischige Masse, die man leicht anfangs als die festgewachsene Zunge deutet, aber diese ragt nicht hervor, sondern birgt im Rachen ihr völlig *freies* abgerundetes Ende. Die Augen sind sehr gross.

Es wirft sich jetzt recht leicht die Frage hervor, welche die Ursache einer solchen Monstrosität wie diejenige der Mopsköpfe sei Nyström betönt in seiner Schilderung eines monströsen *Cottus scorpius*,³) dass man öfter bei gefangenen Tieren solche Missbildungen trifft als bei ihren freien Stammverwandten. Veränderte Lebensbedingungen und veränderte Nahrung, meint er, und vor allem die Weise, auf welche die Tiere sich die Nahrung verschaffen müssen, können einen gewissen Einfluss auf den vorderen Kranialteil und die Kiefer ausüben, und die letzten könnten möglicherweise durch verminderten Gebrauch (Nichtgebrauch muss doch hier zu viel gesagt sein!) reduziert werden. Er giebt doch zu, dass es eine schwierige Sache ist, alles auf diesem Wege erklären zu wollen, und er lässt die Frage noch offen bleiben.

In Zool. Anzeiger N:o 356 spricht Knauthe: »Über Entwicklungsmööen von *Gobio fluviatilis*« und erwähnt, dass er

¹) Vielleicht = *Congromurasna balearica*.
²) Die Zähne sind klein, aber sehr zahlreich besonders im Vorderende des Unterkiefers und sind, wie Günther sagt, »forming bands«.
durch Experimente bestätigt hat, dass »in recht sehr nahrungsm. armen Lachen« sich überwiegend langschneuzige Formen der genannten Species entwickeln, während dass in nahrungsreichen Tümpeln die meisten von der Varietät obtusirostris werden. 1) In wieder anderen Gewässern, die weder so besonders arm noch reich an Nahrung waren, bekam er eine Mischung von kurz- und langschneuzigen Formen, und es ist dann zu bemerken, dass die grösseren und kräftigeren Individuen, die sich besser hätten ernähren können, zu jener die kleineren aber zu dieser Kategorie zugehörten. In allen diesen Fällen hat er einige Gründlinge mit Mopsköpfen bekommen.

Durch die oben citirten Experimente Knauches ist es völlig bewiesen, dass durch reichlicheren Zugang oder Mangel an Nahrung die Form der Tiere verändert werden kann, so dass z. B. kurz- oder langschneuzige Formen einer derselben Art entstehen können. Es fragt sich aber, sind die Mopsköpfe auch auf eine derartige Weise entstanden? Ich glaube ganz entschieden nein! Die oben erwähnten Veränderungen zu lang- oder kurzschneuzigen Formen mögen nützliche Anpassungen zu einer veränderten Lebensweise sein. Die lange Schnauze ist wahrscheinlich ein besseres Werkzeug zum Fangen der spärlicheren Nahrungstiere und die kurze Schnauze ist durch Sparen des Materials entstanden und, dass dies auch nützlich ist, ersieht man davon, dass die kurzschneuzigen Tiere in dem letzterwähnten Falle die kräftigsten waren. Der Mopskopf aber ist ein missbildetes Tier, das von seiner Deformität nur Schade leiden kann und nur mit grosser Schwierigkeit sich ernähren woher er ein nur mühseliges Dasein fristet und nicht bloß einen deformirten Kopf sondern auch einen zwergartigen, plumpen Körper bekommt. Ich behauppe, dass die »Mopsbildung als eine Hemmungsbildung zu betrachten ist, also durch ein pathologisches Stillstehen oder nur Verzögerung des Wachstumes gewisser Teile entstanden ist und ich möchte es als ein analoges Verhältniss zu dem, als ein Mensch mit einer Hasenscharte beheftet ist, betrachten. Denn, dass das Entstehen von Mopsköpfen mit dem nützlichen Entstehen der obtusirostris-Formen nicht zu schaffen hat, das sieht man davon ein, dass Mopsköpfe nicht nur dann entstanden sind als obtusirostris-Formen aus langschneuzigen, sondern auch dann

1) Bei diesen Experimenten nahm er Laich und Brut von der entgegengesetzten Form gegen die, welche er bekam.
als aus obtusirostris-Formen langsnauzigen durch Anpassung sich bildeten, d. h. die Mopsformen sind sowohl dann entstanden, als die allgemeine Entwicklung dahin tendirte die Kiefer zu verlängern, als im entgegengesetzten Falle. Dies zeigt natürlich, dass die Erscheinung pathologisch ist. Pathologische Verhältnisse können ja nämlich gleich gut durch Überfluss als durch Mangel begründet sein und ihre Ursache liegt oft in Veränderungen der normalen Lebensbedingungen. So bekommt man z. B. bei künstlicher Lachszucht oftmals »Mopsköpfe« und Tiere mit zwei Köpfen. Diese pathologische Monstrositäten sind wahrscheinlich davon verursacht, dass die Eier nicht unter normalen Umständen ausgebrütet sind (das letzte kann möglicherweise auch auf Überbefruchtung ankommen) oder können die kleinen Tiere während des Embryonallebens irgend welcher Weise beschädigt oder verletzt werden, so dass Hemmungsbildungen dadurch bedingt werden. Ich glaube auch, dass man gleichfalls ohne Gefahr annehmen darf, dass bei den freien, nicht gezüchteten Tieren die Mopsformen auf eine ganz analoge Weise pathologisch entstanden sind.
Figurenerklärung.

Fig. 1. Mopskopf von Lumpenus lampetraeformis vom Botnischen Meerbusen.

Fig. 2. Normaler Kopf derselben Art von einem Exemplare aus dem Finländischen Meerbusen.

Fig. 3. Mopskopf von Gadus merlangus von der Küste Schonens.

Fig. 4. Mopskopf von Congromuraena balcarica (?) aus Savannah.

Alle sind in natürlicher Grösse gezeichnet.
BEITRÄGE

ZUR

KENNTNISSE KALIFORNISCHER COLLEMBOLA

VON

HARALD SCHÖTT.

MIT 4 TAFELN.

MITGETHEILT DEN 14 OKTOBER 1891 DURCH T. TULLBERG.

STOCKHOLM, 1891.

KONGL. BOKTRYCKERIET. P. A. NORGSTEDT & SÖNER.
Einer Aufforderung des Herrn Prof. T. TULLBERG folgend, habe ich mir vorgenommen eine kleinere Sammlung Kalifornischer Collembola, welche dem Zoologischen Museum zu Upsala vom ehemaligen Docenten an der Universität Dr. GUSTAF EISEN verehrt worden, zu bestimmen.

Ich möchte Herrn Professor TULLBERG meinen verbindlichsten Dank ausdrücken für das grosse Vertrauen, das er mir bewiesen, indem er mir die Bearbeitung des Kalifornischen Materials übertragen, sowie für die vielen Beweise von Wohlwollen, die er mir bei meiner Arbeit erzeigt.

Ehe ich zur deskriptiven Behandlung meines Stoffes übergehe, will ich eine Kurze Auseinandersetzung über die bisher in Nordamerika veröffentlichte Literatur der Collembolagruppe zu geben versuchen.

welcher Thysanura wieder erwähnt wird. Es ist in einem Aufsatz von Dr. A. Fitch über »Winterinsects of Eastern New-York«, der in Amer. Journ. Science and Agriculture vol. 5 eingeführt war, und von J. O. Westwood in Trans. Lind. Ent. Soc. (Ser. 2, 1851 vol. 1, pwc. pag. 94) abgedruckt wurde. Hier wird »an abundant species in our forests in the winter« beschrieben und zwar mit dem Namen Podura nivicola, welche der Verfasser mit P. humicola Fabricius identifizieren will, freilich mit gewisser Reservation, denn er sagt von Fabricius Beschreibung, dass sie »do not coincide well with our insects«. Übrigens will er diese Form der Podura bicolor Say und P. nivalis Bourlet zur Seite stellen. Er wagt doch nicht sie mit einer derselben zu identifizieren, denn es heisst in seiner Beschreibung: »Though found in the same situations as the European P. nivalis, ours is a much darker coloured species«. Say’s P. bicolor is a larger insect than the one under consideration and differs also in size and in the colour of the tail or spring.« Höchst wahrscheinlich ist es eine Art der Gattung Achorutes oder vielleicht eine Xenylla, da er glaubt sie mit der Podura humicola Fabricius identifizieren zu können, denn Packard führt FABRICIUS Form mit einigem Zweifel zur erstgenannten Gattung und TULLBERG hält sie in seinem Aufsatz »Collembola borealia« für synonym mit einer Art innerhalb der nahestehenden Gattung Xenylla. Nach Packard scheint Dr. Fitch auch einen teilweisen Abdruck seines Aufsatzes über Podura nivicola in Journ. Science and Agriculture für 1847 pag. 145 eingeführt zu haben, wo die Form einen Platz in »List of noxious insects« erhalten hat.

Derselbe Verfasser beschreibt im Jahr 1862 in »Eight reports on the noxious and other insects of State of New-York« pag. 186 einige neue Smithuriden und zwar S. hortensis, S. arvalis, S. noreoboracensis, S. elegans und S. signifer. Diese werden mit einer Menge anderer Insecten in einem Aufsatz mit dem Titel »Insects infecting gardens« zusammengeführt. Der Verfasser nennt die Thiere »Flöhe« und führt sie zur »family Poduridace, which, with the Lepisma constitutes the group or suborder named Thysanurae«. Diese Unterordnung wird ihrerseits wieder zur Ordnung Aptera unter den Insekten hingeführt.

Im Jahre 1871 wurde The second memoir of Peabody Academy herausgegeben, welche »Embryological studies on
Diplax, Perithemis and the Thysanurous genus Isotoma of A. S. Packard enthält. Die Arbeit besteht nach der Ansicht des Verfassers nur aus „fragmentary notes and rather rud drawings“, dürfte aber wahrscheinlich nichts destoweniger als ein recht wertvoller Einsatz zur Litteratur und zwar vorzugsweise zur embryologischen in Bezug auf die Collombolagruppe bezeichnet werden. — Man erhält im Anfang eine Zusammenfassung der äusserst begrenzten Litteratur, welche den einschlägigen Stoff behandelt. Es heisst: „All that we know of the embryology of the Thysanura are some 'unsatisfactory observations' on Podura recorded by Nicolet (Dohn. Ent. Zeitung. Stettin 1869 p. 244) and a figure of the embryo of 'Podurella' in Agassiz and Gould's 'Principles of Zoology' figure 110 p. 144 (Edition of 1854). This represents the embryo just ready to hatch. Dr. Dohrn has evidently gathered enough from Nicolet's observations to determine him to place Podura among those insects in which the germ or primitiv band is external to the yolk (insecta ectoblasta). Sir John Lubbock in his memoir on the formation of the egg in the Annulosa (Phil. Trans. London 1861 p. 595) has described the ovarian egg of Petrobius maritimus and its mode of formation. Die Art der Gattung Isotoma, welche Packard als Material bei seinen Untersuchungen hatte, nennt er I. Walkerii nach einem Mr. C. A. Walker. Er gibt übrigens nur eine kurze Beschreibung des ausgewachsenen Tieres und führt es zu ›Nicolet's first section of the genus of which the European I. glacialis is a type.‹ Im American Naturalist desselben Jahres vol. V, p. 91 giebt derselbe Verfasser in einem Aufsatz mit dem Titel ›Bristletails and Springtails‹ eine populäre Darstellung der Thysanura, teilweise auf anatomische Untersuchungen von Lepisma, Tomocerus u. a. gestützt. 1872 giebt er in der dritten Edition seines ›Guide to the Study of Insects‹ einigen Collombola, die sich auf Tafel X in erwähnter Arbeit abgebildet finden, einen Namen. Die, welche von den Figuren 2 und 3 dargestellt werden, nennt er Degeeria flavocincta, ein Name der später mit dem mehr expressiven decemfasciata vertraucht wurde. Die Figuren 4 und 5 stellen Degeeria purpurascens dar und Fig. 6 und 7 Isotoma plumbea.

In einer späteren Veröffentlichung drückt er seine Unzufriedenheit mit den Zeichnungen über die beiden Degeeria-formen aus, indem er sagt: »Unfortunately the figures of the two
Degeeriae are not particularly characteristic und besonders in Bezug auf *D. purpurascens* Poor figures, antennæ too short.

gendermassen: »Its distinguishing character consists in the two pure white spots low down on each side of the abdomen the posterior ones larger than the anterior by one-third to one-half, are arranged, when the back of the animal is viewed from above, in an equilateral quadrangle. In form it greatly resembles the S. Bourletii but in marking and color it is so totally distinct that it would be immediately recognized as different.« Packard Jr. erwähnt weiter im »American Naturalist« für 1881, pag. 231 im Aufsatz »Fauna of the Luray and New-market caves, Virginia« unter anderen Insekten »two species of Thysanura« und zwar einen hellen Sminthurus mit rötlichen Ocellarflecken und eine weissliche Varietät von Tomocerus plumbeus (Linne).

Schliesslich kommt in der oft erwähnten Zeitschrift vol. XX für 1886 auf pag. 299 in dem Abschnitt »Embryologie« ein Aufsatz vor über »The Development of Anurida maritima Guer. of John A. Ryder.«

Sämtliche obenerwähnte Arbeiten hatte ich Gelegenheiten durchzusehen. Die meisten waren doch von untergeordnetem Intresse für diesen Aufsatz, denn sie leiden alle an einer gewissen Mangelhaftigkeit, da sie sich nämlich hauptsächlich innerhalb Farbenbestimmungen bewegen während die Form des Tarsus und der Furcula, von welchen man die am meisten konstanten und karakteristischen Merkmale bekommt, ziemlich oberflächlich behandelt werden.

COLLEMBOLA.

Fam. I. **Sminthuridae.**

Gen. I. **Sminthurus Latreille.**

A. **Setosi.**

1. **Sminthurus Eisenii n. sp.**

(Taf. I, Fig. 1—6.)

Rufus vel subcanus, signaturis in parte abdominis posteriore nigris longitudinalibus vel persæpe triangularibus, quas in margine interiore signaturæ aliae albidae sæpissime sequuntur. Antennæ capite *multo*

Die Fühler sind ihrer Bildung nach bei der kalifornischen Form bedeutend abweichend von denjenigen des S. fuscus (Linne). Sie erinnern sehr an die des S. viridis (Linne) Lubbock, dadurch dass das Endglied ungewöhnlich lang ist, ebenso lang als die drei übrigen zusammen. Dies ist hingegen nie der Fall bei S. fuscus (Linne), wo »articulus ultimus antennarum« nur die zusammengelegte Länge der zwei nächsten Glieder beträgt. (Siehe Fig. 5, Taf. II!) Ferner ist das dritte Glied etwa doppelt so lang als das zweite. Bei S. fuscus (Linne) sind die beiden Mittelglieder ganz gleich lang.

Die Tarsalglieder der Extremitäten sind bei allen drei Formen insofern übereinstimmend als »unguiculus superior« in eine Tunica pellucida eingehüllt ist, die aber nicht so deutlich hervortritt beim S. Eisenii wie beim S. fuscus (Linne). Was die Denticulation der Krallenglieder betrifft, so nähert sich S. Eisenii dem S. viridis (Linne) Lubbock, da wenigstens die Ober- und Unterkrallen der beiden hinteren Extremitätspaaare mit je einem gut entwickelten Zahn versehen, der bei dem dritten Paar besonders gross ist und welche durch ihre Lage dem Krallenglied im Ganzen eine gewisse Ähnlichkeit

Vom »the tarsus« bei S. fuscus (Linne) sagt Lubbock: »On the outer side was an elliptic elongated claw, transparent above, terminating in a spine and bearing also one large tooth and three smaller ones on its under side. On the underside of the tarsus is a second claw, smaller and more slender than the first.« Diese »three smaller ones«, die er zur Oberkralle verlegt, sind sehr schwer wahrzunehmen und zeigen sich völlig deutlich lediglich bei Macerationspräparaten von in Weingeist gelegten Thieren. Beim Kochen in Glycerin schwillt die durchsichtige Hülle an, zieht sich hinauf und lässt den unteren Rand der Kralle fast entblösst liegen. Nichtsdestoweniger ist es auch bei diesem Verfahren beinahe unmöglich irgend eine Denticulation zu entdecken. Solche Zähnchen fehlen indessen ganz und gar bei der kalifornischen Form.

Die Farbenzeichnung bei den typischen Exemplaren der behandelten Sminthuriden ist eine besonders karakteristische. Der grösste Teil des Abdomen ist dunkel gelbbrann mit Flec-
B. Pilosi.

Sminthurus luteus Lubbock.

(Taf. II, Fig. 6—8.)

die hinteren Extremitätenpaare mit zwei und die beiden vorderen mit drei Spūrhaaren versehen.

Im Bau des Körpers herrscht vollständige Übereinstimmung, indem die Thoracalsegmente und der vordere Teil des grossen Abdominalsegments höher liegen als der hintere Teil desselben Segments, wodurch der Rücken gesättelt erscheint. 12 Exemplare.

Sminthurus niger **Lubbock.**
(Taf. II. Fig. 1.)

Die skandinavische Form ist, abgesehen von »maeulae nigrae inter oculos«, ganz schwarz, und ihre Extremitäten sind »wenig heller als der Körper«.

Es ist wohl möglich, dass diese Art mit **Fitch's Sminthurus signifer,** worüber folgendermassen geschrieben worden, identisch ist: »Black with two short, pale, yellow stripes upon the head, the underside and legs dull white. Antennae three-fourths the length of the body, black, their bases pale yellowish. The body is longer than broad, almost globular, without
any projection at its tip and about twice as broad as the head.

Noch schwieriger wird die Entscheidung in Anbetracht dessen, dass Packard die Form von Fitch mit einem von ihm benannten S. elegans identifiziert, die aber meines Erachtens wenig Gemeinschaft im Charakter mit S. signifer Fitch hat.

Sminthurus plicatus n. sp.

(Taf. II, Fig. 2—5.)

H. Schött, Kalifornische Collembola.

Ausseren sehr dem S. elegantulus Reuter. Der gefaltete Rand der Mucrones furculae hat auch ein Gegenstück bei eben erwähnter Art, obwohl die Form des Segments an und für sich eine ganz andere ist.

Gen. II. Papirius Lubbock.
(Taf. III, Fig. 1—3.)

1. Papirius maculosus n. sp.

Das Tier hat eine weisse Grundfarbe, die bisweilen in einen sreblischen oder grauen Ton übergeht. Beinahe die ganze Oberseite des Körpers ist mit einer Menge dunkler Flecke von wechselnder Form und schwarzblauer Farbe, die oft ins klare himmelblau übergeht, bedeckt. Das ganze Tier erscheint gesprenkelt durch die Verteilung der dunklen Farbe auf hellerem Grund, doch macht sich eine gewisse Regelmäßigkeit in der Zeichnung geltend. Die drei in meinem Material befindlichen Individuen sind einander völlig gleich, weshalb es überflüssig sein dürfte auf eine nähere Erklärung der Form und Verteilung der Flecke einzugehen, ich weise also nur auf die gegebene Abbildung hin, füge aber hinzu dass die Antennen ganz dunkelblau ohne weisse Spitzen und die Extremitäten abwechselnd hell und dunkel sind. Die untere Hälfte der Tibia ist weiss wie bei P. ater (LINNÉ) und P. polypodus Lubbock. Die Gabel ist schwach violett und die Unterseite des Tieres rein weiss, ich konnte aber keine grösseren Borsten auf dem grossen Abdominalsegment entdecken. Hingegen liessen sich zwei parallele Reihen äusserst feiner Haare auf dem hinteren Teil des genannten Segments wahrnehmen.

Packard beschreibt zwei Papiriden, P. marmoratus und P. texensis, von denen der erste in Bezug auf die Zeichnung der vorliegenden Art sehr zu ähneln scheint, aber ein wichtiger Unterschied spricht sich unter Anderem in dem Merkmal aus, das er beiden seinen Formen beilegt, nämlich: »claws with three teeth on the edge of larger claw».

Fam. II. Entomobryidae.

Gen. I. Tomocerus Nicolet.

Von dieser Gattung enthält mein Material einige wenige Exemplare, aber sie sind alle so maceriert, dass es unmöglich ist sie zu bestimmen. Eine hierhergehörige Art wird als besonders allgemein in Nord-Amerika bezeichnet. Packard sagt nämlich in »Bristle tails and spring tails«: »The European T. plumbea (LINNÉ), Podura plumbea of authors, is one of our most common species.« Da aber die von Templeton entlehnte Abbildung über das Tier sehr schematisch ist, so ist es schwer zu entscheiden, ob es die Form sei, welche unter dem Namen Macrotoma plumbea (LINNÉ) in »Sveriges Podurider« verzeich-
net steht, oder die von Lubbock beschriebene Tomocerus plumbeus Linne, welche aber eine ganz andere Art als die schwedische ist, von der sie unter Anderem dadurch abweicht, dass "the large claw at the extremity of the tarsus has six minute teeth on the under side".

Gen. II. Entomobrya Rondani.

1. Entomobrya nivalis Linne.

Zwei völlige typische Exemplare.
2. \textit{Entomobrya multifasciata} Tullberg.

Auf die in Fifth ann. rep. of the Trust Peab. Acad. of Science veröffentlichte und \textit{Degeeria decemfasciata} gewidmete Beschreibung Packard's gestützt, hielt ich mich für berechtigt diese Art für synonym mit obiger europäischer Form zu halten. Es sagt nämlich: »Body pale greenish yellow with ten transverse dorsal black stripes, more or less marked including the band annecting the eyes.«

Selbiger Verfasser hat im »Guide to study of Insects« eine Abbildung über eine \textit{Degeeria}form geliefert, die er \textit{flavopicta} nennt und für identisch mit \textit{decemfasciata} hält. Sie hat indessen nur zwei dunkle Fascien und kann also letzteren Namen nicht mit Recht tragen. Auch macht der Verfasser unten in seiner Beschreibung die Anmerkung: »It is not very characteristically figured in the Guide to study of Insects, third red. Pl. 10, fig. 2, 3 under the name \textit{Degeeria flavopicta}, which is inapplicable and which I desire to have dropped.«

3. \textit{Entomobrya marginata} Tullberg.

Einige Exemplare.

Gen. III. \textit{Sira} Lubbock.

(Taf. IV, Fig. 1.)

1. \textit{Sira purpurea} n. sp.

Flava, signaturis purpureis quæ in segmento thoracico tertio et in segmento abdominis primo secundo-
que fascias, totam aream segmenti non occupantes, formant. Segmenta abdominalia cetera purpurea. Long. 2—1,5 mm.

Da die Gattungen Entomobrya Rondani und Sira Lubbock sich nur durch das Vorhandensein oder Nichtvorhandensein von Schuppen unterscheiden, so ist es natürlich unmöglich die Gattung der hierhergehörenden Formen zu bestimmen, da nur in Weingeist conserviertes Material vorliegt. Wenn ich aber nun obige Form zur ersten Gattung führe, so geschlicht dies nur wegen der Zeichnung derselben. Diese erinnert insofern an diejenige bei unseren Sira-arten, dass keine Fascien mit scharf markierten Konturen wie bei allen bisher bekannten zweifarbigten Entomobryaformen vorhanden sind, sondern nur langgestreckte Flecke, die eine scharfe Begrenzung in die Grundfarbe übergehen.

Gen. IV. Drepanura ¹) n. g.

(Taf. IV, Fig. 2—5.)

1. Drepanura californica n. sp.

Die Rumpfsegmente sind ihrer Bildung und gegenseitigen Grössenverhältnisse nach so nahe mit denjenigen der Entomobrya Rondani übereinstimmend, dass es überflüssig sein dürfte, hier auf nähere Details einzugehen. Keulenförmige Haare kommen besonders am vorderen Rande des zweiten Thoracicsegments aber auch auf den übrigen Körpersegmenten vor, wo sie in kleinen Bündeln auf der Grenze zwischen den Segmenten

¹) von τὸ δόξαταρ = Sichel. und ἡ ὀυρᾶ = Schwanz gebildet.
sitzen. *Dentes furculae* sind ihrer ganzen Länge nach mit kurzen Haaren besetzt, die noch den Spitzen zu dünner werden um am Heftpunkt des Endgliedes ganz aufzuhören. Die *Oberkralle* ist mit zwei Zähnen und die *Tibien* mit einem an der Spitze angeschwelten Spür versehen.

Der Platz der Form innerhalb der *Entomobryaserie* lässt sich nicht mit Gewissheit bestimmen, da mir nur in Weingeist conservationirtes Material zur Verfügung stand, weshalb es unmöglich ist zu entscheiden ob der Körper mit Schuppen bekleidet war oder nicht. Nimmt man Rücksicht auf den Bau der Antennen, so dürfte *Drepanura* einen Übergang von *Lepidocyrtus BouRLET* einerseits zu *Entomobrya Rondani* und *Sira Lubbock* andererseits vermitteln.

Die Frage lässt sich aufstellen, ob es richtig sei neue Gattungen aus Formen aufzustellen, welche mit Rücksicht auf den Segmentbau und die Körperbedeckung einzig und allein durch die Verschiedenheiten der appendiculären Teile und die Anzahl der Ocellen absolute Kongruenz aufweisen. Man sollte vielleicht lieber alle Formen des betreffenden, segmentalen Habitus zu einer der Gattungen *Entomobrya Rondani* oder *Sira Lubbock* hinführen und andere weniger wichtige, morphologische Verschiedenheiten einer neuen Arteinteilung zu Grunde legen. Meines Erachtens wäre dieses ein kon sequentes Ver fahren nach dem Princip, welchem man bei anderen Gattungen beispielsweise bei *Isotoma BouRLET* folgte. Bei der grössten Mehrzahl der Arten innerhalb dieser Gattung kommen 16 Ocel-

Als wirkliches Glied in der Kette bisher bekannter Collembola muss man dagegen eine solche Gattung wie die von Tullberg in »Collembola borealia« aufgestellte Corynotherix ansehen, welche zugleich Isotomaus Segmentbildung wie Entomobryas Körperbekleidung besitzt.

Es dürfte indessen berechtigt und der Übersicht wegen geeignet sein, wenigstens vorläufig auf Grund morphologischer Abweichungen von mehr untergeordnetem Wert neue Gattungen innerhalb der Entomobryaserie aufzustellen, wo man bei der Arnteilung ausschliesslich auf den Farbencharakter angewiesen ist und sich gewöhnt hat, die Bildung derjenigen Organe, welche bei anderen Collembolagattungen für artbestimmend gelten, als gleichartig für die ganze Serie anzusehen.

Gen. V. Orchesella Templeton.

1. Orchesella rufescens Lubbock.

Ein einziges Individuum der hellen Form ohne transverselle Fascien angehörend.
Gen. VI. Isotoma Bourlet.

Isotoma viridis Bourl., var. aquatilis Lubbock.

1843. Podura viridis, Bourlet, Méms. sur Les Podurelles p. 26 (ad part.).

1872. Isotoma palustris, Tullberg, Sveriges Podurider p. 45 (ad partem).

1873. » tricolor, Packard jr., Fift ann. Rep. of The Trust of the Peab. Acad. of Science for the year 1872, p. 34.

Diese Form ist in zwei Exemplaren vorhanden, deren Zeichnung mit der bei Lubbock befindlichen grossen Abbildung genau übereinstimmt. Wie es sich aus der Synonymik ergiebt, gehört die oben erwähnte Art zu der Serie von der Länge nach gebänderten und mit steifen Borsten versehenen Isotomaformen die Tullberg in Sveriges Podurider I. palustris (Gmelin) nennt. Ich glaube mit dieser Anmerkung die Form genügend bestimmt zu haben, die ich mit I. viridis Bourlet var. aquatilis Lubbock gemeint, und will mich hier nicht auf eine weitere Entwickelung einlassen, weshalb ich Gmelin’s soeben erwähnten Artnamen verworfen, da ich in einem bald zu erscheinenden Aufsatz meine Auffassung darstellen will betreffs der Bedeutung von der Namenbezeichnung, die in der Collembologischen Literatur für die Gattung Isotoma Bourlet gebraucht wird.

Packard scheint, aller Wahrscheinlichkeit nach, die hierhergehörrende Hauptform unter dem Namen Isotoma tricolor beschrieben zu haben, die er als »our largest and commonest species« darstellt; sie ist »dark peagreen« und hat »the body rather thickly hairy, with a few hairs much longer than the others on the terminal two-thirds of the abdomen«.

Isotoma palustris Müller.

1876. » Stuxbergii, Tullberg, Collembola borealia p. 35.

Aus demselben Grund, der bei der vorhergehenden Art angeführt worden ist, wende ich für diese Form Müller’s oben erwähnten Namen an, ohne eine andere Erklärung als die,
welche aus der Synonymliste hervorgeht, beizufügen. Doch will ich darauf aufmerksam machen, dass die Exemplare von Kalifornien, welche mir vorliegen, nicht der Länge nach gebändert sind, weshalb sie nicht für Müller's Diagnose zu passen scheinen. Sorgfältige Studien der Literatur haben mich doch vollständig überzeugt, dass diese Form als eine Varietät von Podura palustris des genannten Verfassers angesehen werden kann, die ich für eine ganz andere halte als die von TULLBERG angeführte Isotoma palustris (GMELIN), aber dagegen identisch mit I. Stuxbergii desselben Verfassers.

Einige Exemplare.

Fam. III. Lipuridae.

Gen. I. Achorutes (Templeton).

1. Achorutes viaticus TULLBERG.

Diese Form ist in der kalifornischen Sammlung reichlich vertreten und zeigt völlige Übereinstimmung mit der schwedischen.

2. Achorutes armatus (NICOLET).

1841. Podura armata

Diese Art glaube ich in Packard's Achorutes marmoratus wiederzufinden, wovon es heisst: »Pale gray marbled with large lilac gray patches. The supra-anal spines are of the same size, being large and long.« Weiter unten in der Beschreibung wird hinzugefügt: »This species may at once be recognized by its pale lilac gray color laid on in patches.«
Gen. II. Xenylla Tullberg.

1. Xenylla maritima Tullberg.

Etwa dreissig Exemplare.

Gen. III. Lipura Burmeister.

1. Lipura inermis Tullberg.

Ohne Zweifel meint Packard mit *L. jimetaria* obige Art, wenn er in seiner Beschreibung sagt: »It may be known from *L. ambulans*, with which at first easely be confounded, by wanting the hooks at the end of the abdomen.«

Eine grosse Anzahl Exemplare.
Explicatio tabularum.

Tab. I.

<table>
<thead>
<tr>
<th>Fig.</th>
<th>Sminthurus Eisenii, n. sp.</th>
<th>Animal pronom.</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.</td>
<td></td>
<td>Tarsus pedum secundi paris.</td>
</tr>
<tr>
<td>4.</td>
<td></td>
<td>Furcula.</td>
</tr>
<tr>
<td>5.</td>
<td></td>
<td>Muero furculæ.</td>
</tr>
<tr>
<td>6.</td>
<td></td>
<td>Antenna.</td>
</tr>
</tbody>
</table>

Tab. II.

<table>
<thead>
<tr>
<th>Fig.</th>
<th>Sminthurus niger Lubbock, Animal pronom.</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.</td>
<td>plicatus n. sp. Animal e latere visum.</td>
</tr>
<tr>
<td>3.</td>
<td>Muero furculæ.</td>
</tr>
<tr>
<td>4.</td>
<td>Antenna.</td>
</tr>
<tr>
<td>5.</td>
<td>Tarsus pedum primi paris.</td>
</tr>
<tr>
<td>6.</td>
<td>integ LUBBOCK, Animal supinum.</td>
</tr>
<tr>
<td>7.</td>
<td>Muero furculæ.</td>
</tr>
<tr>
<td>8.</td>
<td>Tarsus pedum primi paris.</td>
</tr>
</tbody>
</table>

Tab. III.

<table>
<thead>
<tr>
<th>Fig.</th>
<th>Papirius maculosus n. sp. Animal pronom.</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.</td>
<td>Muero furculæ.</td>
</tr>
<tr>
<td>3.</td>
<td>Tarsus pedum primi paris.</td>
</tr>
<tr>
<td>4.</td>
<td>Sminthurus fuscus (LINNÉ) Antenna.</td>
</tr>
<tr>
<td>5.</td>
<td>Furcula.</td>
</tr>
</tbody>
</table>

Tab. IV.

<table>
<thead>
<tr>
<th>Fig.</th>
<th>Siræ purpurea n. sp. Animal e latere visum.</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.</td>
<td>Drepamra californica n. sp. Animal pronom.</td>
</tr>
<tr>
<td>3.</td>
<td>Muero furculæ.</td>
</tr>
<tr>
<td>4.</td>
<td>Entomobrya spec.</td>
</tr>
<tr>
<td>5.</td>
<td>Muero furculæ (ad comp.).</td>
</tr>
<tr>
<td>6.</td>
<td>Drepamra californica n. sp. Tarsus pedum primi paris.</td>
</tr>
<tr>
<td>5.</td>
<td>Lepidocyrtus spec.</td>
</tr>
<tr>
<td>6.</td>
<td>Muero furculæ (ad comp.).</td>
</tr>
</tbody>
</table>
ON

AN APPARENTLY NEW ARACHNID

BELONGING TO THE FAMILY

CRYPTOSTEMMOIDÆ, WESTW.

BY

T. THORELL.

COMMUNICATED NOVEMBER 11th, 1891.

STOCKHOLM, 1892.

KUNG. BOKTRYCKERIET. P. A. NORSTEDT & SÖNKR.
The Class Arachnida consists, as is known, of a tolerably great number of higher Groups, Orders and Suborders, which are, in general, separated by exceedingly sharp characteristics; transition-forms from one of these groups to another are therefore rarely met with. Some of them, as the Phrynoidae, the Thelyphonoidae and the curious genus Koenenia, Grassi, consist of only a small number of species, or perhaps sometimes of a single species, and are so isolated, that it is difficult to assign to them their true rank within the Class: whereas other equally small and isolated groups, whose systematical place and nearest relations are easily recognised, differ from these in what might be believed to be their most essential characters. The Opiliones, or Harvest men, have, and with reason, been considered as one of the best characterized Orders of Arachnida: it contains, however, a few groups which in a startling way deviate from the more typical forms of the Order. Leaving aside the too imperfectly known genus Gibbocellum, Steck., which is by Stecker, 1 Sörensen 2 and others considered to belong to the Opiliones, but has by me 3 and by Croneberg 4 been referred to the Chelonethi or Pseudoscorpiones, we have within that Order two families, the Stylocelloidæ (= Sironoidæ?) Thor., and the Cryptostemmoidæ, Westw., which form the types of two groups that differ widely from the rest of the Order and from each

2 Opiliones Laniatores Musei Havniensis, in Naturhistorisk Tidsskrift, Ser. III, XIV, p. 569 et seq.
3 Descrizione di alcuni Aracnidi inferiori dell'Arcipelago Malese, in Annali del Museo Civico di Storia Nat. di Genova, XVIII (1882), p. 22 (6) et seq.
other. This is especially the case with the Cryptostemmoidae, which have all the coxae and the maxillae grown together and united along the middle line of the body, thus forming a connecting link between the Opiliones and the Cheloniethi, though undoubtedly belonging to the former Order.

Of this group, the Cryptostemmoidae, only two species have hitherto been made known: Cryptostemma Westermanni, Guér., from Western Africa, and Cryptocellus foedus, Westw., from South America. Of the former species Guérin-Méneville gave a rather short and imperfect description in the Revue de Zoologie. 1838:¹ this description was repeated, in nearly identical terms, by H. Lécas in the Dict. Pitt. d'Hist. Nat., VII, with the addition of the figures of the animal representing it as seen from above and from before. Finally, Gervais has, in Walkenaer's and Gervais' Hist. Nat. d. Ins. Apt., III, p. 131: Atlas, Pl. 47, fig. 4 and 4* (1844), copied these figures and given an extract of Guérin-Méneville's original description; he correctly calls those organs palpi, which had erroneously been considered by Guérin-Méneville ² as mandibles (=antennes-pinceaux). The figures show that the tarsi of the first pair of legs in Cryptostemma Westermanni consist of a single joint.

¹ Note sur l'Acanthodon et sur le Cryptostemme, nouveaux genres d'Arachnides, par M. Guérin-Méneville, in Revue Zoologique, par la Société Cuvierienne. Année 1838, p. 19: «Le genre Cryptostemme se range dans l'ordre des Trachécènes, et fait partie de la tribu des Phalangiens; il est voisin des Trogules; comme eux il a l'extrémité antérieure du céphalothorax avancée en forme de chaperon; mais nous n'avons pu lui voir aucune trace d'yeux: et les antennes-pinceaux sont saillantes, en forme de pattes et plus courtes que celles-ci. Le céphalothorax est distinct de l'abdomen, de forme carrée: les pattes sont très-inoégales en longueur, aplatis, terminées par des tarses de 4 et 5 articles greux dont le dernier est le plus grand; la seconde paire est la plus longue, ensuite la troisième, puis la quatrième, et enfin la première qui est la plus courte. L'abdomen est de la largeur du corps, deux fois plus long, aplati et un peu enfoui en dessus, convexe en dessous et paraissant divisible en quatre segments. L'espèce unique de ce genre curieux nous a été envoyée par M. Westermann, comme provenant de la Guinée, nous la nommons: Cryptostemma Westermannii, Gré. Long.: 9 millim.

Corps et pattes d'un gris terreaux, couverts de nombreuses aspérités; chaperon plus large en avant, rebordé, avec un faible sillon longitudinal au milieu: céphalothorax un peu bombé, rebordé sur les cotés et en arrière, avec un sillon longitudinal au milieu, beaucoup plus profond en arrière, et une forte impression oblique de chaque côté; abdomen à bords très-relevés, avec deux impressions obliques à la base de chaque segment.»

² Dictionnaire l'Étudians d'Histoire Naturelle sous la direction de M. Guérin-Méneville. Tome VII (1838), p. 353 (article Phalangidiens: Cryptostemma), Pl. 539 (476bis), fig. 7, 7 a. — An abridgement of this article, also signed H. L., is found in the Dictionnaire Universel d'Histoire Naturelle. Tome IV (1849), p. 438 (art. Cryptostemma).
Westwood has much later, in his Thesaurus Entom. Oxon., p. 201. Pl. XXXVI. fig. 5 (1874) described and figured a species from the Amazones. which is nearly related to Cryptostemma Westermannii, and to which he has given the name Cryptocellus foedus, thus creating a new genus for it. and uniting the two genera in the family Cryptostemmoidae [-midae]. Westwood's description is very full and detailed: but when he says that the palpi are fixed on the coxae of the 1:st pair of legs, he commits, I think, an error. The palpi are in Cryptostemma. Guer., nob., a sin other Opiliones. and doubtless also in Cryptocellus, fixed on the maxillae: the coxae of the 1:st pair are, however, in these animals easily overlooked, being almost concealed by the palpi: they are wedge-shaped, with the pointed, inwardly directed base not reaching the middle line of the sternal surfaces formed by the coxae and the maxillae, with which latter they are intimately grown together. and which thus may easily be taken for the coxae in question.

In a paper with the title: Sopra alcuni Opilioni (Phalangidea) d'Europa e dell'Asia Occidentale. etc.,¹ I have, on the strength of the characteristics alleged by Westwood, expressed the opinion that his Cryptostemmoidae diverged so much from other Opiliones. that it was necessary to create for them a separate Suborder. which I called Ricinulei. The differences pointed out by me were principally these: The abdomen consists only of four segments. besides a small anal one: the cephalothorax forms in front a moveable. downwardly directed hood (labrum), which covers and conceals the mandibles; the coxae are united with each other along the middle line of the under side of the cephalothorax. and the palpi consist of only four joints. But to these characters the following must be added: the maxillae are grown together with each other and with the coxae of the 1:st (and 2:nd) pairs of legs: they are immovable, like the coxae, which are all devoid of a maxillary lobe. The mandibles are directed downwards and are formed of two joints only. of which the second has the form of a long and rather slender claw directed inwards. so that the mandibles in these animals resemble very nearly those of the true Spiders. though they may be called didac-

¹ Annali del Museo Civico di Storia Naturale di Genova. VIII (1876). 454 (4).
tyle, the claw being received in a fork formed by the prolonged inner corner of the apex of the first joint, or mandible properly so called. The palpi are stretched backwards, under the body; their basal joint forms a true capitulum, which is inserted in a deep socket on the under side of the maxilla, and they are therefore, probably, moveable in more than one direction. The trochanters of the two posterior pairs of legs are two-jointed. It is evident, therefore, that the Cryptostemmoideae differ in so many important points from the Suborders into which the Opiliones had formerly been divided, that it becomes impossible to place this Family in any of them. By the general form of the body and the short legs, the Cryptostemmoideae remind one, however, of the Troguloidae, in the vicinity of which they have also generally been placed: their 'hood' (schaperon) represents no doubt the forwardly directed, not moveable part of the cephalothorax, which in the Troguloidae and some other Opiliones protects the parts of the mouth.

The Zoological State Museum at Stockholm possesses an Opilio belonging to the Cryptostemmoideae or Ricinulei, which was captured in Sierra Leona a century ago by A. Afzelius. 1 Though pinned and somewhat damaged, this specimen is sufficiently well preserved to show all the more essential particulars of its external structure. My first impression on examining this animal was, that I had an example of the Cryptostemma Westermannii before me; indeed the general form of the body, the 'hood' and the palpi are almost completely such as are figured and described by the above cited authors; but the legs appear to differ materially from those of Guérin-Ménéville's species. He says in fact, that they are 'aplaties', and the figures of the animal, seen from the upper side, show the tibie of the 2nd pair and the metatarsi of the 3rd pair dilated and flattened on the inner side, whereas in the specimen examined by me, none of the legs show the least trace of

1 This naturalist, born in 1750, commenced his career in the University of Upsala as a 'Docens Linguarum Orientalium', but after some years he abandoned his philological pursuits and devoted himself to the study of Natural History. Having been appointed a 'Botanices Demonstrator' in the University, he went, in 1789, to England, and lived many years there and in the newly founded colony of Sierra Leona, whence he sent home and to London valuable botanical and zoological collections. After his return to Sweden in 1799, Dr Afzelius was appointed an E. O. Professor of Medicine. He died in Upsala at the age of 86 years.
being flattened or dilated; they perfectly resemble the legs of *Cryptocellus foedus*, according to Westwood's figures; and the tarsi are all thick and obtuse, whereas in H. L.'s and Gervais' figures of *Cryptostemma Westermanni* the six posterior tarsi are much more slender than the preceding joints.

These differences are very puzzling. On the one side, it does not seem probable that Guérin-Méneville should have described the legs of his species as being «aplaties», without there being really some reason for calling them so; on the other hand it appears very strange that two animals belonging to this curious Suborder, and living nearly in the same parts of tropical Africa, should differ so much in the form of the legs, though they would seem to resemble each other perfectly in almost all other particulars, as in the number of the joints of the tarsi of the different pairs of legs, in the form of the «trunexus», the hood and the palpi, etc. It is possible (though scarcely credible), that the differences in question are sexual, and that Guérin-Méneville's specimen is a male, and the other a female; but I am not aware of analogous differences between males and females existing in any other group of Opiliones.

At all events, the specimen in question well deserves to be described in detail, and figured. From *Cryptocellus*, which it perfectly resembles as to the legs, it differs in the form of the abdomen and of the cephalothorax: in *Cryptocellus foedus*, in fact, the abdomen is scarcely longer than broad; its cephalothorax is more strongly narrowed from behind forwards, and the hood therefore smaller than in *Cryptostemma Westermanni* and in our specimen. For this latter a new genus must be founded, if the legs of Guérin-Méneville's species really are, in both sexes, such as he describes them; for the present, however, I refer it to *Cryptostemma*, but think it different from the *C. Westermanni*, the figure and description of which show a few deviations (besides those in the form of the legs), from what I see in the specimen caught by Afzelius: in this, f. inst., the impressions on the dorsal segments of the abdomen are parallel, not «oblique», and the hood is without the «faible sillon longitudinal au milieu», which is said to exist in *C. Westermanni*. I call our species, in memory of its discoverer, *Cryptostemma Afzelii*.

I shall now give a description of this species, preceded by a tabular view of the Suborders into which I think the
Opiliones should at present be divided, and a characteristic of the Suborder Ricinulei and the Family Cryptostemmoideae, as also of the genus Cryptostemma, under the supposition that our C. Afzelii really belongs to that genus. Cryptocellus, Westw., differs, as I have already stated, from Cryptostemma, Guér., nob., perhaps only by the shorter abdomen and the cephalothorax more tapering forwards. If Gibbocellum, Steck., really is an Opilio, a separate Order must probably be created for its reception. 1

The characters that have hitherto been considered as common to all Opiliones, must, after the discovery of Cryptostemma and Cryptocellus, be much reduced in number; and these characters are, as may be seen from the following attempt at a definition of the Order, mostly negative. From the Chelonethi the Opiliones are, if we leave aside Gibbocellum, easily distinguished by the palpi not ending in well developed pincers, by the want of spinning-organs opening on the mandibles, and by the spiracles being only two, not four. From the Aeari the Opiliones are scarcely in all cases distinguishable by any other external character than the structure of the abdomen, which, in the Opiliones, is evidently segmented at least at its posterior end.

Ordo Opiliones, Sund., 1833.

Abdomen tota latitudine sua cum cephalothorace conjunctum, saltem postice distincte segmentatum, cauda vel procursu caudali carens. Mandibulae didactyles, organis nendi carentes. Palpi aut apice inermes, aut ibi unguiculo vel ungui singulo praediti, non in forcipem perfectam exunctes. Omnes pedes unguiculati. Spiracula duo, ad basin ventris sita, in

1 Since I had the good luck to receive, for examination, an animal belonging to the Ricinulei, I am no longer so fully convinced that Gibbocellum belongs to the Chelonethi, and not to the Opiliones, as I formerly was. The most important characteristic, that seems to unite Gibbocellum with the Chelonethi, viz., the maxillae being of the same form and direction as the coxae, which are all destitute of a maxillary lobe, belongs also to the Ricinulei; as to the other marks, on the strength of which I referred that genus to the Chelonethi, i. e., the presence of spinning organs, the four spiracles, as also the expressions used by Strecker regarding the mouth parts and the anatomy of his G. Sudeticum, it is quite possible that that author's statements are erroneous: conf. Sörensen, loc. cit. Before we get a trustworthy description of that highly interesting animal, it is impossible to decide with certainty as to its true systematic affinities.
tracheas tubulares, non in tracheas lamellares (saccos pulmonales) continuata (nonnumquam nulla?).

II. Laminae supra-maxillares nullae. Coxae omnes lobo maxillari carentes.

1. Mandibulae tri-articulatae, art. 1° porrecto. Maxillae liberae, mobiles. Palpi 5-articulati. Segmenta abdominis dorsalia 8—9 Subordo III. Anepignathi. 1

Subordo Ricinulei, Thor., 1876. 2

Fam. Cryptostemmoidae, Westw., 1874.

Cephalothorax antice laminae mobili deflexa (cucullo) munitus, qua mandibulas abscondit, præterea non segmentatus, ab abdomine articulatione divisus. Abdomen ex segmentis (dorsalibus et ventralibus) quaternis quintoque anali constans.

2 Supra aliqui Opilioni (Phalangidea) d'Europa et dell'Asia occidentale. et., ibid., VIII (1876), p. 454 (5).
Mandibularum art. 2a gracilis, unguem intus directum formans, cujus apex in furca art. 1a recipitur. Palpi, retro sub trunco extensi, in apice ungui sat parvo et spina (forcipem veram non formantibus) armati. Pedes robusti, breviores, omnes unguiculis binis muniti; coxae 1a paris cuneiformes, basi acuminata intus directa non usque ad sulcum sternale pertinentes; trochanteres pedum posteriorum in bina internodia divisi. (Tarsi 1a paris ex articulo singulo, 2a et 4a parium ex 5, 3a pars ex 4 articulis constantes. Oculi nulli. Spiracula duo obtecta).

1. Abdomen saltem quarta parte longius quam latius. Cephalothorax anteriora versus sat leviter angustatus. Pedum internodia pleraque sub-angulata, quadrangulo-teretiuscula. (interdum ad partem deplanata?)..............................

Gen. Cryptostemma, Guér.

2. Abdomen non vel param longius quam latius. Cephalothorax anteriora versus sat fortiter angustatus. Pedum internodia sub-angulata vel teretiuscula..............................

C. Afzelii, n., piceo-nigrum. Crasse granuloso-scabrum, cephalothorace sulco levi longitudinali abbreviato in medio, sulco transverso tenui secundum marginem posticum, sulco longitudinali postice abbreviato utrique, secundum margines laterales ducto, sulcoque brevi oblique utrique, magis intus in lateribus sito, prvento; segmentis abdominis dorsualibus saltem 3a et 4a impressionibus sive foveis oblongis parallelis binis munitis; pedibus obtusissimis, nullibi deplanatis vel dilatatis, tarsis metatarsos crassitie pane aquantibus. — Long. circa 11 millim.

Truncus circa duplo longior est quam latior, antice et postice late rotundatus et obtusissimus, in lateribus modo leviter rotundatus et utrique, inter cephalothoracem et abdom. evidenter sinuato-angustatus.

Cephalothorax (sine cucullo) abdomine paullo plus duplo brevior est coque paullo angustior, parum latior quam longior, antice truncatus, postice, ubi articulatione distinctissima procura ab abdomine est divisus, fortiter rotundatus et paullo latior quam antice, latitudine maxima paullo pone medium: lateribus enim a basi ad coxas 2a paris rectis sensim paullo
est dilatatus, dein anteriora versus fortius angustatus, lateribus hic primum (supra coxas illas) paullo simulatis sive concavatis, denique vero leviter rotundatis. Transversim sat fortiter convexus est, a latere visus proelivis et presertim postice, ubi brevi spatio praeerupte declivis est dicendus, modo convexus. Secundum margines laterales sulcums sat profundum postice abbreviatum (non usque ad medium longitudinis lateris pertinentem) ostendit, ita hic utrique sub-elevatolimbatus; in medio sulcum longitudinalinalem brevem habet, ante medium longitudinis cephalothoracis incipientem, et pone cum impressionem sine foveam latam levem; fere in medio inter sulcums illum medium et margines laterales sulcos duos breves obliquos posteriores versus divericantes ostendit quoque. Praeterea secundum marginem posticam sulco tenui est praeditus, hic igitur quodammodo limbatus. Crasse et inaequilater granulosos-caber est, presertim versus margines laterales et posterius. Tota sculptura propter lutum, quo obductus est cephalothorax, ad magnam partem minus distincta tamen est.

Cucullus e lamina deorsum, immo paullo retro directa formatur, qua mandibulas et partem maxillarum tegit et abscondit. Cephalothorace ipso non parum angustior est, articulatione ab eo separatus et mobilis, basi truncatus et paullo angustior quam est cephalothorax antice, paullo longior quam latior basi, ab ea apicem versus lateribus primum (usque ad medium fere) rectis lenius, dein lateribus rotundatis fortius dilatatibus, apice latissime et in angulis versusque eos fortiter rotundato, itaque ad apicem pene dimidio latior quam basi. Modice convexus est, sulco distincto pene recto et presertim antice abbreviato secundum margines laterales pradito, his duobus sulcis apicem cuculli versus leviter divericantibus. Crasse et sat dense granulosus est, granulis ad margines, presertim ad marginem anticum, densis, angustioribus et subaeuminatis, praeterea obtusis. Subter profunde excavatus est cucullus et costis duabus altissimis parallelis ab angulis baseos pene ad marginem anticum pertinentibus praditus (musculi, quibus movetur cucullus, basi harum costarum affixi sunt); praeterea costam medium longitudinalinalem humilem ostendit, et tuberulum in medio baseos, a quo haec costa pene ad apicem ducta est, inter basin et medium tamen obsolenta.

Sternum nullum: tota enim superficies inferior cephalothoracis a maxillis et coxis omnibus inter se coalitis (modo
suturis vel sulcis separatis) et cum parte media segmenti abdominis ventralis 11 aream magnam pæne planam formantibus occupatur.

Oculi nulli; etiam orificiis glandularum foetoriarum sive Krohnii carere videtur cephalothorax.

Abdomen saltem \(\frac{4}{1} \) longius est quam latius, antice leviter et latissime emarginatum, lateribus leviter (modo postice fortius) rotundatis posteriorea versus sensim paulullo angustatum, antice brevi spatio anteriora versus paullo angustatum quoque, postice late et sat fortiter (in medio tamen parum) rotundatum. Supra sulco profundo marginali in lateribus et postice cinctum est, qui ab articulatione cephalothoracem ab abdomine separanti initium capit. Cutis, qua supra tectum est, mollis videtur, quum in exemplo nostro dorsum abdominis, limbo laterali et postico exceptis, collapsum sit, ita ut abdomen a latere visum cephalothorace non parum humilius videatur. Sulcis (nonne articulationibus?) tribus in segmenta quattuor divisum est dorsum abdominis, his sulcis apicibus, apud limbum lateralem, retro curvatis et in hoc limbo in formam lineæ longitudinalis tenuis plus minus distinctæ retro productis, præterea rectis. Segm. dorsuale 11 brevissimum est, præsertim in medio, ubi vix \(\frac{1}{4} \) millim. longum videtur, in lateribus plus duplo longius. Segm. 21 11 multis partibus longius est, circa duplo latius quam longius; segm. 31 et 41 eo non parum breviora, et pæne eadem longitudine inter se; præsertim 41 posteriora versus sat fortiter est angustatum. Foveas binas oblongas parallelas et magis levæs in segmentis duobus ultimis video, longe inter se remotas et paullo longius a margine postico quam a margine antico segmenti distantes. Praeterea crasse granuloso-scabra sunt segmenta, excepto in limbo laterali (et postico). ubi modo subtiliter granulosum est dorsum.

Venter, fortiter et æqualiter convexus, ut dorsum abdominis ex 4 segmentis constat, sulcis (articulationibus?) separatis, quorum primus in medio fortiter recurvus est, praeterea procurvus, reliqui duo recti. Segm. 11 saltem triplo latius est quam longius, multo brevius in medio quam ad latera: margo ejus anticus in medio sub-angulatim retro fractus est, praeterea utrinque lenius procurvus; margo posticus in medio late et leviter est recurvus, versus latera eadem modo procurvus. Utrinque, intus, hoc segmentum impressionem profundam.
valde magnam sub-triangulam, extus ad longitudinem truncatam, apice intus directam ostendit, in qua coxa 4a paris recipitur; que impressio videri tamen non potest, nisi coxa (cujus margo superior-posterior in costam nitidam dilatatus est) elevatur: in fundo hujus impressionis spiracleum vidisse videor. Pars media segmenti 1a, inter coxas visibilis, formam trianguli latissimi fere habet. Segm. 2m fere triplo longius est quam segm. 1m in medio; segm. 3m segm. 2a non parum brevius est. 4m etiam paullo brevius et presertim angustius, lateribus rotundatis posteriora versus sensim fortiter angustium, postice in medio truncatum, paullo plus duplo latius antice quam longius in medio. Sat crasse et sat dense granulosus et sub-scaber est venter, antice tamen et in ipso limbo subtiius granulosus. Impressiones sive foveas oblongas binas, eodem modo fere atque in dorso dispositas sed magis obsoletas, habere visi sunt segm. ventralia 2m—4m. In ipso apice abdominis segmentum anale parvum transversim ovatum conspicuit, inter segm. dorsuale 4m et segm. ventrale 4m inserturn, apertura rotunda non parva (ano) in medio praeditum: nescio an ut a segm. dorsuali 5a et ventrali 5a conflatis formatum considerari debeat.

Mandibula\textsubscript{e}, inter coxas 1a paris cephalothoraci injunctae, postice maxillis, antice cucullulo (quum hic deflexus est) arcte adjacent, in interstitiis inter costas tres lateris inferioris cuculli receptae. Ex binis articulis, ut in araneis positis, forcipem didactylem tamen quodammodo formantibus constant. — Art. 1a (\textit{mandibula} aranearum) deorum est directus, brevis, latus et crassus: a fronte visus sub-quadratus est, parum longior quam latior, lateribus parallelis et modo levissime rotundatis; apice latissime est truncatus, angulo interiore in formam trianguli sat longi deorum late producto. hoc triangulo in margine interiore serie densa denticulorum obtusorum circa 5 munito; ad basin ejus, extus, dentem fortem obtusum format apex art. 1a: a triangulo illo et hoc dente \textit{furca} parum profunda formatur. In margine intus et præsertim postice dense ciliatus est hic apex. — Art. 2a, angulo exteriori apicis art. 1a injunctus, hunc articulum longitudine æquat; in quiete intus directus est, apice in furca ejus recepto. Gracilis est, \textit{aunque} longum æqualiter et sat fortiter curvatum formans, ut in araneis; ipsa basi sat crassus est, dein paullo compressus et, a latere visus, usque ad medium æquali latitudine, a medio
ad apicem sub-obtusum vero sensim attenuatus; in latere interiore sive superiore versus basin omnium subtilissime crenullatus videtur.

Maxillae transversim posita sunt, foras et modo paullo anteriora versus quaque directae, coxis 1^1 et 2^1 parium coalite, modo subter sulco distincto inter se separate; a latere inferiore visae conjunctim laminam antice latissime emarginatam et in margine antico pilosam formare videntur, a fronte vero visae laminam directam sat altam transversim concavatam, quae in medio supra impressionem maximam, infra et in lateribus rotundatam, fere semicirculatam ostendit, cujus in fundo apertura oris locum tenet. Paullo longiores (transversim) quam latiores sunt maxillae, trapezoides fere (non plane rectangulae), lateribus antico et postico pæne parallelis; in medio lateris inferiores, non procul a margine interiore sive basale, foveam rotundam profundissimam (in quo capitulum basale palpi est insertum) ostendunt; ab hac fovea glenoidali usque ad marginem exteriorem liberum ad longitudinem suam fortiter convexae sive sursum curvae sunt et, ad excipiendum basin palpi, profundissime excavatae. Quoad non a palpis et cucullo teguntur, sat subtile et dense granulosæ sunt. — Nec laminarum supra-maxillarum, nec labii vestigium ullam cernere potui.

Palpi sat longi et fortes, pedibus 1^1 parum tamen non parum breviores et angustiores, sub truncó retro extensae et paullo incurvæ. Ex 4 articulis constant, quorum 1^2 et 2^2 breves sunt, 3^2 et 4^2 iis multo longiores. — Art. 1^1 forma est insolita, valde compressus, in dimidio suo apicali circiter æque altus ac longus: dimidium ejus basale contra subito et fortissime in capitulum angustum et longum est attenuatum, quod in fovea glenoidali maxillae est insertum. — Art. 2^2 subcompressus art. 1^2 parum altior est, supra eo parum longior et circiter æque longus ac latus, subter vero transversus et duplo brevior quam supra. — Art. 3^2, vix compressus, pæne æque altus est atque art. 3^2 eoque plus duplo longior; pæne duplo et dimidio longior est quam latior, in parte tertia (apicali) longitudinis sensim paullo attenuatus et incurvus: extus ad longitudinem æqualiter et sat fortiter convexo-areatus est, intus magis apicem versus concavo-areatus (a latere inferiore visus). — Art. 4^2 priore non parum longior et pæne duplo angustior est, fere 6:plo longior quam latior, rectus et teres,
a basi ad apicem sensim parum angustatus; in medio apicis obtusissimi unguiculó sat forti breviore, dimidiam diametrum art. 4a longitudine non multo superanti, leviter incurvo (an mobili?) munitus est et paullo magis intus spina recta etiam paullo breviore et angustiore instructus (ungui et spina pæne parallelis), ita ut apex art. 4a forcipe minuta aperta (spuria) praeditus dici possit. Sat dense et sat subtiliter granulosi sunt palpi, et pilis brevissimis sat dense conspersi.

Pedes ita: II, IV, III, I, longitudine se excipiunt. Breves sunt, 2a paris, qui 1a paris pedibus pæne duplo sunt longiores, trunco (sine eucallo) parum plus 1/3 longiores (a margine cephalothoracis dimensi). Sat crassi sunt pedes, apicem obtusissimum versus parum angustati, vel in medio paullo crassiores quam apice et versus basin. Pedes quatuor anteriores, ut in reliquis Opilionibus, præter articulos tarsales, sex internodia habent, posteriores pedes contra septem, quam trochanter corum in duos articulos divisus sit, quorum alter, basalis, trochanter primus vel modo trochanter appellari potest, alter trochanter secundus vel trochanterinus. — _Coxae_ transversim posita sunt, 2a paris paulullo anteriores quoque versus directae; 4a paris etiam paullo magis posteriora versus divericant, praesertim in margine anteriore recurvæ. _Coxae_ et maxillæ fere eadem latitudine sunt, inter se coalitæ, modo sulcis separatæ; maxillæ et coxae tres posteriores alterius lateris modo sulco medio longitudinali a maxilla et a coxis illis lateris alterius separatæ sunt, ita aream medium magnam pæne planam (aream sternalem) dense et sat subtiliter granulosam inter palpos formantæ. _Coxæ_ sex posteriores basi truncatae sunt; _coxae_ 2a paris, versus apicem rotundatum, ubi palpis teguntur, paullo sursum curvatae et magis laèves (non granulosæ), triplo sunt longiores quam latiores, lateribus parallelis; _coxae_ 3a et 4a parium iis paullo breviores sunt, basin versus sensim non parum angustatae, pæne duplo latiores versus apicem quam basi. _Coxae_ 1a paris ad forman et positionem non parum a reliquis differunt. Forma enim cunei sunt, ab apice rotundato basin versus sensim angustate, inter maxillas et coxas 2a paris insertae, basi acuminata non ad sulcum sternalem pertinentes, et a basi palporum abseonditæ. Quamquam apice rotundato saltum æque longe pertinent ac coxae 2a paris, iis pæne duplo

1 Non II, III, IV, I, ut in _C. Westermanni_ (vix recte) dixit Guérin-Méneville: vid. sup., p. 4, not 1.
breviores sunt; paullo procurvæ videntur, pæne lœves, costa longitudinali obliqua munitæ. — Trochanteres fortes sunt, in pedibus anterioribus femore evidenter crassiores; in his pedibus æque circa longi ac lati sunt, in pedibus 3æ parvis breviores quam longiores, in 4æ parvis paullo longiores quam latiores. Ut internodia insequintia, patellis et præsertim tarsis pæne teretibus exceptis, sub-prismatici, quadrilatero-teretiusculi fere, sunt. Trochanteres 4 anteriores, ut trochanterini pedum posteriorum et femora omnia omnesque tibiae et metatarsi, in apice, inferius, ad longitudinem incisi sunt, in haec incisura basin compresso-angustatam internodii sequentis recipientes. — Trochanterini 3æ parvis trochantere transverso pæne duplo longiores sunt, paullo longiores quam latiores; in pedibus 4æ parvis trochanterinis trochanterem longitudinalæ æquat. — Femora, 3æ parvis exceptis, apicem versus sensim paulullo incrassata sunt, multo (in 4æ parvis pedibus 5—6:pló) longiores quam latiores, sulco apicum versus sensim dilatato subter prædita et etiam supra sulco longitudinali plus minus distincto munita. — Patellæ femore multo, in pedibus 2æ parvis plus duplo, breviores sunt, circa duplo longiores quam latiores, sub-elavate, in apice rotundato, inferius, incisura transversa prædictæ, in qua recipitur tibiae basis deplanato-angustata. — Tibiæ patellæ non parum longiores (in pedibus 4æ parvis dæ tamen modo paulullo longiores), femore breviores; in pedibus anterioribus tibiae: (et patellæ) paulullo crassiores sunt quam femora. Omnes tibiae subter et supra eodem modo ad longitudinem sulcatae sunt ac femora. — Metatarsi tibiæ non parum angustiores sunt, eam longitudinem circiter æquantes, supra et subter sulco longitudinali lato forti præditi. — Tarsi sursum curvati vel flexi, pæne cylindrati, obtusissimi, metatarsos crassitie fere æquantes. In pedibus 1æ parvis brevissimi sunt, ex articulo singulo constantes, qui sub-globosus est, modo paullo longior quam latior; in pedibus 2æ parvis tarsus metatarsum longitudine æquat, ex 5 articulis (eodem modo inter se conjunctis, quo eorum primus cum metatarso conjunctus est) formatus: art. 1æ—3æ transversi sunt, supra ad longitudinem sulcatis et desuper visi fere <formes; art. 4æ circa duplo longior est quam latior, eodemque modo sulcatus, 5æ eo duplo brevier, paullo modo longior quam latior. In pedibus quoque 4æ parvis tarsi ex 5 articulis constant, quorum tamen primus supra adeo est brevis, ut vix distinguat possit, quum desuper inspicitur.
tarsus, subter vero proxime sequentibus non brevior; art. 2a—4a transversi et supra ad longitudinem sulci sunt, desuper visi c-formes; art. 5a fere dimitio longior quam latior. In pedibus 3h paris tarsi modo 4 articulos habent, quorum 1a—3a ut art. 1a—3a in 4a paris tarsis formatus est, ultimus quoque ut ultimus in iiis. (In pede sinistro 3h paris exemplum nostrum modo singulum articulum tarsalem habet, ut pedes 1h paris!). Articulus ultimus omnium tarsorum in apice rotundato in cisura sive fovea profunda triangular prædictus est, in qua unguiculi bini parvi laves conspicuntur; in pedibus 4a paris hi unguiculi paullo majores et magis exserti sunt. Sat erasse et dense granulosi sunt pedes, in tarsis tenuiter et breviter pubescentes.

Color. — Totum animal piceo-nigrum est, palpis magis piceis, mandibularum art. 1o saltem versus basin piceo-testaceo, latere antico maxillarum sub-testaceo. Pili brevissimi, quibus pedes versus apicem et palpi sunt conspersi, flavo-testacei sunt. Ad magnam partem truncus exempli nostri strato plus minus tenui luti vel terræ sub-ferrugineæ tectus est.

Mensura. — Lg. trunci (cucullo deflexo) circa 11 millim. Lg. cephaloth. (sine cucullo) parum plus 4, lat. ej. max. 41, lat. ej. antice paullo plus 3; lg. cuculli 21, lat. ej. max. 31 millim. Lg. abd. max. paene 71, lg. ej. in medio 61 millim. Palpi 51 millim. longi. Pedes I 71, II paene 141, III 91, IV circa 13 millim. longi (a margine cephalathoracis ad apicem tarsorum dimensi).

Exemplum supra descriptum in Sierra Leona Africæ occidentalis invenit Cel. A. AFZELIUS.
Explicatio figurarum.

Fig. 1—8. Cryptostemma Afzelii, Thor.

Fig. 1. Animal pronum, pedibus lateris dextri carens.

2. Truncus cum cucullo, maxillis, palporum articulis tribus primis et basi pedum, a latere inferiore visus: cu. cucullus; tr₁, trochanter 1ˢ paris; mx, maxilla; p₁³, art. 3ʰ palpi.

3. Pars anterior trunci, sine cucullo et sine palpis, cum mandibulis, maxillis et basi pedum 1¹—3⁽ parium, a latere inferiore visum: md, mandibula; mx, maxilla; c₁—c³, coxae 1¹—3⁽ parium; tr₁—tr³, trochanteres horum pedum; tn³, trochanterinus pedis 3⁽ paris.

4. Cucullus a latere interiore sive inferiore visus.

5. Mandibula sinistra, a fronte visa.

6. Maxille (antice sine sutura inter se coalitae), cum apertura oris et basi palpi sinistri a fronte visae.

7. Palpus sinister, a latere inferiore visus.

8. Tarsus pedis (dextri) 3⁽ paris, a latere inferiore visus.
ÜBER

ECHINORHYNCHUS TURBINELLA, BREVICOLLIS UND PORRIGENS.

VON

ERNST BORGSTRÖM.

MIT 5 TAFELN.

MEDDELADT DEN 9 DECEMBER 1891 GENOM S. LOVÉN.

STOCKHOLM 1892
KUNGL. BOKTRYCKERIET. F. A. NORSTEDT & SÖNER

Für die Färbung dieser Thiere scheint Hæmatoxylin am besten zu sein. Auch Doppelfärbung mit Hæmatoxylin und Eosin gab gute Resultate.

Für die guten Rathschläge und den wohlwollenden Beistand, welchen Professor Dr. TYCHO TULLBERG und Professor Dr. HJALMAR THEÉL während der Ausarbeitung dieses Aufsatzes mir gütigst geleistet haben, ist es mir eine theure Pflicht ihnen hier meinen tief gefühlten Dank abzustatten. Insbesondere bin ich Herrn Professor Tycho Tullberg Dank schuldig, weil er in der zoologischen Institution die für meine Arbeit notwendigen Hülfsmittel und Raum zu meiner Verfügung gestellt hat, auch bin ich meinem Freund dem Herrn Cand. phil. L. A. Jägerskïöld zu grossen Dank für das Überlassen seines sehr wertvollen Materials verpflichtet.
Echinorhynchus turbinella. Diesing.

Diese Art ist von Diesing zuerst angetroffen und in seinem »Systema Helminthum« beschrieben worden. Er gibt folgende Diagnose an:

Wie oben erwähnt wurde, enthielt der Darm jeder Balanoptera borealis eine grosse Anzahl von E. turbinella. Sie waren

doch immer auf den Dünndarm begrenzt, wo die ganze Innenfläche (sowohl die Querfalten selbst als die Zwischenräume) mit ihnen bestreut war. Sie sassen sehr dicht bei einander angehäuft. Der Bulbus (Receptaculum) und ein kleiner Theil des Halses waren in die Darmhaut eingesenkt. Die Farbe, die bei lebenden Thieren ziegel-bis orangeroth ist, stammt von kleinen Crustaceen, welche dem Wirth zur Nahrung dienen und den Darminhalt roth färben.

Folgende Masse habe ich an ausgewachsenen Individuen dieser Art genommen:

1. **Längenmasse.**

<table>
<thead>
<tr>
<th>Körper</th>
<th>Männchen</th>
<th>Weibchen</th>
</tr>
</thead>
<tbody>
<tr>
<td>Länge</td>
<td>22—26 mm</td>
<td>25—28 mm</td>
</tr>
<tr>
<td>Proboscis</td>
<td>0,5 mm</td>
<td>3 mm</td>
</tr>
<tr>
<td>Bulbus</td>
<td>2—3 mm</td>
<td></td>
</tr>
<tr>
<td>Hinterleib</td>
<td>16—20 mm</td>
<td>20—22 mm</td>
</tr>
</tbody>
</table>

2. **Breitenmasse.**

| Proboscis | nach vorn | 0,25 mm | hinten | 0,33 mm |

1 Die Angaben von der Lebensweise des *E. turbinella* und *porrigens* hat mein Freund Cand. phil. L. Jägersköld mir gültigst mitgethelt.
Bulbus etwa .. 3 mm.
Hals .. 0,9 »
Hinterleib 3—4 »

Die Proboscis ist kurz kegelförmig und mit 19—20 Längsreihen Haken (Taf. III fig. 26, 27, 28) besetzt, die wie gewöhnlich mit einander alternieren. Jede zweite dieser Reihen zählt 6, während die übrigen aus 7 Haken bestehen, von welchen der unterste bedeutend kleiner ist.

Die Wurzel der Haken hat eine Länge von 0,04—0,087 mm., die Klaue misst 0,04—0,087 mm. Im Allgemeinen kommt nur eine hintere Wurzel vor. Nur die vordersten Haken zeigen den Ansatz zu einer vorderen Wurzel. Der Winkel, den die Wurzel und die Klaue mit einander bilden, ist an den vorderen Haken etwas grösser als an den hinteren. Übrigens sind die Haken nur wenig abgeplattet.

Echinorhynchus brevicollis. Malm.

A. W. Malm hat in seiner »Monographie du Balenoptère etc. Stockholm 1867> eine neue Art aufgestellt, die er E. brevi-
collis nennt. Wegen der Ähnlichkeit dieser Art mit E. turbinella theile ich hier eine Beschreibung derselben mit. (Taf. V. Fig. 47.)

Folgende Masse sind von einem 26 mm. langen Exemplar genommen worden:

Länge des Bulbus......... 1.5 mm.
 des Halses 3.5
 des Hinterkörpers 21
Breite des Bulbus......... 2
 des Halses 0.7
Grösste
 des Hinterkörpers 2

Die vordere Fläche des Bulbus ist flach und mit Haken besetzt, von welchen die grössten eine Länge von 0.09 mm. besitzen. Der Bulbus wird nach hinten schnell dünner und geht in den Hals, welcher sich allmählich zum Hinterkörper verdickt, über. Die Längsachse des Bulbus bildet immer mit der Längsachse des Thieres nach der Bauchseite zu einen Winkel, der immer 135° überschreitet.

Leider kann ich keine Masse des Rüssels angeben, denn bei allen von mir angetroffenen Individuen war die Proboscis mehr oder weniger in die Proboscisscheide, die etwa 1 mm. in der Länge beträgt, eingezogen. Infolge dessen war es auch schwer die Zahl der Haken in jeder Längsreihe zu rechnen. Sie mag doch im Allgemeinen aus fünf bestehen. Die Anzahl der Längsreihen beläuft sich auf 24—25.

Die Haken des Rüssels (Taf. III fig. 29, 30, 31) besitzen eine Länge von 0.08 bis 0.093 mm. Die hinteren sind somit nur wenig kürzer als die vorderen, welche einen sehr unbedeutenden Ansatz zu einer vorderen Wurzel zeigen.

Da das vordere Ende des Thieres in die Darmhaut eingesenkt sass und somit schlecht gehärtet war, war dieser Abschnitt auch wenig geeignet für anatomische Untersuchungen.
Echinorhynchus porrigens. Rudolphi.

Rudolphi beschreibt die äussere Form des Thieres, da aber der Rüssel an seinen Exemplaren mehr oder weniger eingestülpt war, nennt er von der Anordnung der Haken nichts.

Vom grössten Exemplar führe ich diese Masse an.

<table>
<thead>
<tr>
<th>Messgröße</th>
<th>Wert</th>
</tr>
</thead>
<tbody>
<tr>
<td>Länge des ganzen Thieres</td>
<td>110 mm.</td>
</tr>
<tr>
<td>Rüssels</td>
<td>0,5</td>
</tr>
<tr>
<td>Bulbus</td>
<td>4,5</td>
</tr>
<tr>
<td>Halse</td>
<td>15</td>
</tr>
<tr>
<td>Hinterkörpers</td>
<td>90</td>
</tr>
<tr>
<td>Breite</td>
<td>Bulbus</td>
</tr>
<tr>
<td>Halses</td>
<td>0,75</td>
</tr>
<tr>
<td>Hinterkörpers</td>
<td>4</td>
</tr>
</tbody>
</table>

Der Rüssel ist kurz kegelförmig. Die vordere, schmale Partie des Bulbus ist scharf abgesetzt, wodurch der grösste Theil der vorderen Fläche desselben flach erscheint (Taf. V. fig. 48, 49 und 50). Ein scharfer Rand trennt den vorderen Abschnitt von hinten, der sich allmählich nach hinten verdünnt. Der Hals ist schmal und lang. Der Übergang vom Halse zum Hinterkörper ist ein sehr allmählicher. Dem Bulbus fehlen deutliche Haken. Die Haken der Proscis (Taf. III. fig. 24, 25) sind in 24 Längsreihen gestellt, von welchen je eine 6, je eine 7 Haken besitzt. Die Länge der Haken schwankt zwischen 0,06 und 0,067 mm., diejenige der Wurzel zwischen 0,053 und 0,06. Die hinteren Haken sind nicht hierin ein-
gerechnet. Diese Masse wurden von einem 80 mm. langen Individuum geholt.

In der Darmhaut des Wirtes Balanoptera borealis sassen die Thiere sehr vereinzelt mit dem Bulbus und dem ganzen Halse eingesenkt. Der Hals geht parallel mit der Darmfläche durch das Gewebe, um mit dem Bulbus in einer Querfalte der Darmhaut zu enden, wo eine grosse Auftreibung derselben vorhanden ist. Die Farbe war im lebenden Zustand wie bei E. turbinella ziegel-bis orangerot, aber etwas lichter.

Die drei Arten, welche nur bei Walthieren vorkommen, gleichen einander im Ganzen in Betreff der äusseren Form. indem bei allen drei scharf hervortretende Körperabschnitte uns entgegen treten: der muskelreiche und deswegen feste Bulbus mit dem kurz kegelörmigen Rüssel, der fadenförmige Hals und der lange, schmale cylindrische Hinterkörper. Ausserdem ist die Form der Haken des Rüssels und des Bulbus bei allen im Ganzen dieselbe. Um sie leichter von einander zu unterscheiden habe ich folgendes Schema aufgestellt:

I. Länge 80 bis 109 mm. Bulbus ohne deutliche Haken; das Verhältniss zwischen der Breite des Hinterkörpers und der Länge des Thieres am höchsten $\frac{3}{4}$ E. porrigens.

II. Länge bis 28 mm., Bulbus mit deutlichen Haken.

A) Das Verhältniss zwischen der Breite des Hinterkörpers und der Länge des Thieres etwa $\frac{1}{3}$. Haken des Rüssels in 19—20 Längsreihen E. turbinella.

B) Das Verhältniss zwischen der Breite des Hinterkörpers und der Länge des Thieres etwa $\frac{1}{4}$. Haken des Rüssels in 24—25 Längsreihen E. brevicollis.

Auch eine vierte Echinorhynchusart hat man in Walthieren gefunden nämlich E. capitatus v. Linstow in Pseudoreca crassident.1 Diese Art erreicht eine Länge von 53 bis 100 mm. und kann möglicherweise mit E. porrigens verwechselt werden, von welchem sie sich indessen durch ihren hakenbesetzten Bulbus, kürzeren Hals und ganz gleichbreiten Hinterkörper unterscheidet.

Der erste Theil der grossen, schönen Arbeit J. Kaisers ist jetzt eben, wo meine Arbeit fertig ist, in meine Hände gekommen. Für seine Untersuchungen hat er die *Echinorhynchusarten gigas, moniliformis, angustatus, hervica, tricocephalus, uncinatus, strumosus* und eine Art, die er in *Balaenoptera Sibbaldii* gefunden hat und *E. porrigens* nennt, angewendet.
In Betreff des Namens der letzten hat er Zweifel ausgesprochen und zwar mit Recht, denn seine Untersuchungen galt der von A. W. Malm beschriebenen Art *E. brevicollis* und nicht *E. porrigens*.

Die angeführten Masse (darunter eine Totallänge von 12—28 mm.) und die völlig entwickelten, receptaculären Haken beweisen dies zur Genüge.

Nur kurz erwähnt er den Bau der Cuticula, Subcuticula, Lemnisci, Proboscis, Proboscisscheide und Muskellagen oben erwähnter Art.

Die Haut.

In der Haut können wir wie gewöhnlich drei Lagen wahrnehmen: die Cuticula, die Subcuticula und die äusserst dünne Grenzmembran.

Eine radiäre Streifung des unteren Lagers habe ich nie sehen können, obgleich eine solche bei anderen Arten vorher wahrgenommen worden ist. Sie muss somit hier fehlen oder äusserst undeutlich sein.

1 Kaiser, Bibliotheca zoologica 1891. Heft. 7 (pag. 15 und 16).
Es muss auch bemerkt werden, dass eine untere Cuticular-
schicht der Bursa und der genannten vorderen Einbuchtung fehlt.
Die Subcuticula ist von Baltzer, Seefügen und kürzlich
von Hamann ¹ sehr eingehend beschrieben worden. Die ent-
wicklungsgeschichtlichen Untersuchungen des letzteren haben
ein ganz neues Licht über den Bau dieses Gewebes geworfen.
Seinen Angaben gemäss ist nämlich dieses Gewebe eine
Epidermis, wo eine weiche Grundsubstanz nebst den Kernen
die primären Theile bilden, während die Fasersysteme sekun-
däre Bilder sind.
Ich gehe nun zur Beschreibung der Subcuticula meiner
Arten über.
E. turbinella (Taf. I, fig. 6). Drei Fasersysteme lassen
sich hier leicht bemerken: ein radiäres, ein ringsverlaufendes
und ein längsgehenndes, welche nicht gleichmässig über das
ganze Gewebe vertheilt sind. Das radiäre System durchzieht
die ganze Subcuticula von der Grenzmembran bis zur Cuticula.
Nur die obere Partie derselben wird von den beiden anderen
Systemen durchsetzt. Somit sind hier zwei Lager nacb-
zuweisen: ein äusseres, kompaktes (s) und ein inneres, lockeres,
ds nur von Radiärfasern gebildet wird (s'). Die längs- und
ringsgehennden Fasern schliessen sich bei dieser Art nicht zu
Bändern zusammen, was bei anderen Formen das gewöhn-
lichste ist, sondern flechten sich ausserordentlich dicht durch,
doch so, dass der innere Theil dieses Gewebes ein wenig loser
wird als der äussere. Dicht unter der Cuticula findet sich oft
eine radiäre Streifung.
Hier und da werden die subcuticulären Kanäle nicht all-
seitig von den Fasern der lockeren Lage begrenzt, sondern
nach oben kommt oft das kompakte Lager als begrenzender
Theil hinzu. Dies findet vorzugsweise im Bulbus und in
der Halsregion statt.
Die zu Bündeln vereinigten, radiären Fasern durchsetzen
das kompakte Lager, in dessen innerem Theil sie paralell ver-
laufen, um im äusseren Abschnitt desselben sich nach den
Seiten auszubreiten und mit benachbarten Bündeln in Verbin-
dung zu treten. Daher kommt es, dass den über den Kanälen
gelegenen Bezirken der kompakten Schicht stets radiäre Fa-
sern fehlen.

¹ Hamann. Monographie der Acanthocephalen. Jena 1891 (pag. 26).
Alle Fasern sind in einer homogenen Grundsubstanz eingebettet. Gegen die Oberfläche zu tritt sie reichlicher auf und verursacht wahrscheinlich die hier vorkommende größere Lichtbrechung.

Die Subcuticula erreicht am Hinterleib eineDicke von etwa 0,12 mm., und ist in der Halsregion ein wenig dünner, während die des Bulbus eine verhältnismässig grosse Mächtigkeit erreicht. Die Proboscis ist mit einer sehr dünnen, aber deutlichen Subcuticula versehen. Die kompakte Lage der Subcuticula verhält sich zurlockeren: am Hinterleibe und vorderen Theil des Bulbus (Taf. II, fig. 7 s. s') wie 2 : 1, in der Halsregion (Taf. I, fig. 6) wie 1 : 1, während im hinteren Abschnitt des Bulbus (Taf. II, fig. 11) das Verhältniss 1 : 2 wird.

Im vorderen mit Haken besetzten Theil des Bulbus bilden die Kanälchen ein Netzwerk, das in jeder Masche einen Haken einschliesst. Im Rüssel ist wahrscheinlich das Netzwerk ein noch mehr kompliziertes. Zwei an der Rücken- und Bauchseite gelegene Haupfstämme treten in der Halsregion auf. Sie
durchziehen den ganzen Hals um wie die Seitenstämme im Bulbus zu verschwinden.

Die Kerne der Subcuticula sind klein und am öftesten in den Kanälen vorhanden. Vorzugsweise scheinen sie da, wo die Kanälchen sich verzweigen, gelegen zu sein und treten in mehreren Gestalten auf. Sie sind nämlich bald länglich viereckig, wie die meisten der Subcuticula der Bursa, bald rundlich mit unebenen Rändern, bald aber unregelmässig vieleckig, spitzige Auswüchsse tragend. In der vorderen Hälfte des Bulbus und am Rüssel kamen sie äusserst spärlich vor, ja an einigen Exemplaren waren gar keine zu sehen. Wahr scheinlich stehen die Kerne mit der Wand der Kanälchen in Verbindung, da aber auch die in diesen eingeschlossene Nahrungsfüssigkeit Farbenstoffe aufnimmt, habe ich nur undeutlich die Vereinigungsbander sehen können.

E. brevicollis. Die Dicke der Subcuticula des Hinter körpers beläuft sich nur auf etwa 0,066 mm. Längs- und ringsgehende Fasern sind hier auch in der lockeren, inneren Lage vorhanden. Auch ist die Grenze zwischen einer kom pakten und lockeren Lage bei weitem nicht so scharf hervor tretend wie bei _E. turbinella_. Zahlreiche kleine Kerne liegen in der Haut zerstreut, vorzugsweise doch in den Kanälchen. Von den Seitenstämmen gehen die halbkreisförmigen Kanäle sehr dicht und streng parallel aus. Sie sind durch spärliche, rechtwinklige oder schräge Anastomosen mit einander verbunden. 1

E. porrigens. (Taf. I, fig. 5.) Der Bau der Subcuticula dieser Art weicht in mehreren Hinsichten von dem des _E. turbinella_ ab. So giebt's hier in Betreff der Vertheilung der Fasersysteme fast keinen Unterschied zwischen dem äusseren und inneren Abschnitt dieses Gewebes, denn die rings- und längsverlaufenden Fasern durchziehen das ganze Gewebe, indem sie nach innen ein wenig spärlicher werden und somit die Radianfasern etwas schärfer hervortreten lassen.

Gleich ausserhalb der Grenzmembran der Subcuticula be gegnet uns eine dünnse Schicht, die sich etwas dunkler als die übrige Subcuticula färbt, weil hier die oben erwähnten Längs- und Ringfasern dicht gedrängt stehen und doch den Radiär fasern freien Durchtritt gestatten. Weiter sind die Wände der

1 Kaiser (Bibliotheca zoologica. Heft 7, pag. 30) gibt an, dass die Anastomosen zwischen den halbkreisförmigen Kanälen rechtwinkelig sind.
Kanäle fest und werden wenigstens im vorderen Theil des Körpers nicht, wie bei vorhergehenden Arten, nur von aus-
cinander weichenden Radiärfasern dargestellt, sondern einige
Lagen verflickter Radiärfasern versehen sie mit einer starken
Hülle. Zahlreiche längsgehende Fasern umgeben die äussere
Hälfte der beiden seitlichen Hauptstämme. Das Kanalsystem
ist im Ganzen dasselbe wie bei E. brevicollis: ziemlich dicht
stehende, halbcirkelförmige Kanäle, die nur wenig mit einander
anastomosieren. An Längsschnitten trifft man also eine Menge
quer schnittener Kanäle, wogegen die Querschnitte der Sub-
cuticula nur wenige zeigen. In Taf. I, fig. 5, die einen Längs-
schnitt der Haut darstellt, sind drei halbcirkelförmige Kanäle
durchschnitten. In der Halsgegend kommen doch hier und
da grössere Anastomosen vor. Am Bulbus bilden die Kanälchen
ein Netzwerk mit groben Maschen. Eine Ausnahme hiervon
bildet doch der vorderste, dünne Abschnitt desselben, wo ein
sehr feinmaschiges Netz mit Leichtigkeit nachgewiesen werden
can. Bei jungen, nicht völlig ausgewachsenen Exemplaren
habe ich in den Maschen von letzterem kleine Haken wahr-
genommen, deren Aussehen und Platz andeuten, dass sie den
receptuculären Haken des E. turbinella entsprechen.

Die Kerne der Subcuticula sind viel grösser als die der
vorhergehenden Arten und liegen fast immer im Gewebe ein-
gebettet. Ihre Form ist rundlich oder ellipsoidisch. Sie
schliessen einen mit mehreren Körnchen versehenen Kern-
körper oder einige zerstreute Körperchen ein.

Die am Bulbus des E. turbinella und brevicollis gelegenen
Haken (Taf. II, fig. 7) müssen im Zusammenhang mit der Sub-
cuticula beschrieben werden. Ihre grössste Länge beläuft sich
auf etwa 0,14 mm, welches Mass sie an der Mitte des Bulbus
erreichen. Darauf nehmen sie nach vorn an Höhe ab und
kommen auch an der äusseren Wand der Falte der Subcuti-
cula vor, wo ihre Länge auf 40—50 μ. vermindert worden ist.

Die Hauptmasse dieser Haken (gr. II) besteht aus einer
ziemlich harten, homogenen, glänzenden Substanz, die von
Haematoxylin ein wenig, von Saffranin intensiv glänzend roth
gefärbt wird, von Boraxkarmin aber gar keinen Eindruck
empfängt. Nach innen strecken sie sich bis zur oder nahe
bis zur Grenzmembran; im letzteren Falle werden sie von
dieser durch eine dünne Lage Radiärfasern getrennt. Das
kompakte Lager der Subcuticula, das sich nach der Spitze der
ERNST BORGSTRÖM, ÜBER ECHINORHYNCHUS TURB. BREV. U. PORRIG.

Die Haken der Proboscis zeigen keine grösseren Eigen tümlichkeiten. Mit einer Wurzel, die ungefähr die Länge der Klau erreicht, sitzen sie in die unten erwähnte, homogene Schicht eingesenkt.

Betreffend die Fasern der Subcuticula sagt Hamann: »Den Subcuticularfasern, das heisst den Fibrillen der Epidermis, haben sowohl Schneider, Leuckart, Baltzer wie auch Sefftigen einen muskulösen Charakter zugeschrieben. Sie sind jedenfalls elastischer Natur.«

Die Lemnisci.

Die Hauptmasse dieser Subcuticularbildungen stellt wie gewöhnlich ein verworrnes Netzwerk von Fasern dar. Die

1 Hamann. Monographie der Acanthocephalen. Jena 1891. Pag. 27.
längsverlaufenden Fasern scheinen hauptsächlich in der Peripherie gelegen zu sein. Sie sind mit einem dünnen, homogenen Überzug, zu welchem ich später zurückkommen werde, versehen.

E. turbinella und brevicollis. (Taf. II, fig. 9 & 12. L.) Die Lemnisci dieser Arten haben ein sehr eigen tümliches Aussehen. Sie sind nämlich fadenförmig und erreichen zuweilen eine Länge, die diejenige des ganzen Thieres übertrifft. Ich habe aber keine Gelegenheit gehabt, ihre Lage in der Leibeshöhle am lebenden Material zu studiren. Bei allen in Alcohol, Perenyi's Flüssigkeit und Sublimat mit Essigsäure gehärteten Individuen lagen sie immer in mehrfachen Windungen geschlängelt, eine Lage, die wahrscheinlich eine natürliche ist, da die Lemnisci eine so bedeutende Länge (25 mm.) erreichen können. Ihre Dicke schwankt zwischen 0,1 und 0,2 mm. Am dünnsten sind sie im vorderen und hinteren Ende, welches letztere in eine abgestumpfte Spitze ausgezogen ist. An der Ausgangsstelle der Lemnisci bildet die Cuticula eine fingerförmige Einstülpung in diese hinein, die z. B. bei E. turbinella nur etwa 30 μ lang wird. In ihrem vorderen Theil werden sie von einigen unbedeutenden Kanälen durchsetzt und zeigen sich ziemlich kompakt, während die mittleren und hinteren Abschnitte derselben stets einen am öftesten central verlaufenden Hauptkanal besitzen, der sich nach hinten vergrößert. Nebst diesem Hauptstamm sind auch kleine Lakunen vorhanden, die doch in ihrer hintersten Partie sehr spärlich oder gar nicht vorhanden sind.

Die Kerne weichen bedeutend von denjenigen der Subcuticula ab. Die Kerne der Lemnisci haben nämlich eine mehr regelmässige, ellipsoidische bis kugelförmige Gestalt ohne Auswühche und Unebenheiten.

Bei den meisten bis jetzt anatomisch untersuchten Arten sind die Lemnisci mit einem Muskelmantel von Längsmuskelcylindern versehen. Ein solcher fehlt hier ganz. Es ist angenommen worden (HAMANN), dass diese Muskelbekleidung durch den Druck, den sie auf die Lemnisci ausübt, Nahrungsflüssigkeit zum Ringkanal und von hier zum Lakunensystem des Rüssels hervorpresst. Auch wenn ein Muskelmantel hier vor-

1 KAISER (Bibliotheca zoologica. Heft. 7, pag. 35) spricht bei E. brevicollis nur von einem axialen Kanal.
handen wäre, würde er wegen der grossen Länge und Dünne der Lemnisci nur von geringem Nutzen sein können.

Die Nahrung, welche die *Echinorhynchen* aus dem Darme ihres Wirthes aufnehmen, ist freilich sehr verdaulich. Doch dürfte eine Umarbeitung derselben von Nöthen sein, und wahrscheinlich hat die Subcuticula mit ihrem Kanalsystem diese Aufgabe erhalten. Als die Cuticularfalte auftrat und das Kanalsystem des Rüssels vom übrigen Theil des Körpers trennte, war es wegen der Dünne der Subcuticula des vorderen Körpervendes nothwendig die verdauende Fläche dieses Körperabschnittes zu vermehren, welches auch durch die Entwicklung der Subcuticulareinstülpungen (Lemnisci) gescheh. Indessen dürften die Lemnisci, welche oft eine bedeutende Grösse erreichen, auch der Leibeshöhle zurücksichtete Nahrung abgeben, was auch Leuckart für glaublich hält. Sehr wahrscheinlich ist, dass besonders bei diesen zwei Arten die Lemnisci den Geschlechtsorganen, um welche sie oft geschlängelt liegen, frische Nahrung zuführen.

Die Behauptung Greeffs, dass die Lemnisci Excretionsorgane seien, hat Leuckart in Zweifel gezogen. Wenn man den Lemnisci eine solche Function zuschreibt, müssen ja die Excretionsprodukte in die Leibeshöhle ausfallen, was auch Greeff glaubt gesehen zu haben. Wie würden sie dann aus dem Körper entfernt werden? Bei dem Weibchen haben wir ja die Glokcke, bei dem Männchen aber würden sie in der Leibeshöhle bleiben, was sehr unwahrscheinlich scheint. In Folge dessen will ich mich der Ansicht Leuckarts anschliessen.

Das Muskelsystem.

E. turbinella. Die innere Begrenzung der Subcuticula besteht aus einer äusserst dünnen für Farbstoffe ziemlich empfindlichen Membran (Taf. I, fig. 6 g. b.) und unter dieser folgt eine homogene Schicht (Taf. I, fig. 6 h. s.), die zuweilen einige Streifung zeigt. Am Hinterleib ist sie dünn, nimmt am Hals in der Dicke zu, wo sie eine grosse Mächtigkeit erreicht um im Bulbus wieder dünner zu werden. In der Proboscis ist dieses Lager besonders wohl entwickelt, wo es zur Stütze der Haken dient (Taf. II, fig. 8 h. s.), deren Wurzel hier eingesenkt sitzen. Weiter sieht man, wie dieses Gewebe die Lemnisci, Längsmuskeln, Proboscisscheiden und Nerven mit mehreren Organen bekleidet. Baltzer betrachtete dieses Lager
als Bindegewebe, 'SÆFFTIGEN (pag. 128) dagegen als ein sekundäres Absonderungsprodukt der Muskeln. Betreffend die Körperdecke der von ihm untersuchten Arten spricht HAMANN theils von einer Grenzmembran der Subcuticula (pag. 31), theils von einem Sarkolemm, die immer die Muskelbänder umhüllt (pag. 41). Diese beiden Schichten kommen auch in der Körperdecke dieser Art vor, das Sarkolemm aber ist in zwei Lager differenziert: die oben erwähnte homogene Schicht und eine innere dünne Lage, die die Ringmuskeln und die Muskelbeutel umschliessen. Die letztere nennt ich eigen-
liches Sarkolemm.

Die homogene Schicht ist besonders durch ihre Unempfänglichkeit für Eosin ausgezeichnet, eine Eigenschaft, die übrigens auch das erwähnte eigentliche Sarkolemm des Ringmuskellagers besitzt, von welchem sie sich nur durch ihre geringe Fähigkeit Farbstoffe einzusaugen unterscheidet.

Der Überzug der Lemnisci ist relativ dick und geht bei der Ursprungsstelle von diesen unmittelbar in die unter der Subcuticula gelegene homogene Schicht über. In der Basis der Proboscis theilt sich diese in zwei Blätter, von welchen das eine sich nach vorn fortsetzt um die dicke Stützschicht der Haken darzustellen, und das zweite nach hinten zieht um nach einer Spaltung bei der Ursprungsstelle der Proboscis Scheide die respektiven Sarkolemma-Uberzüge (s) der beiden Blätter der Scheide zu bilden (Taf. II. fig. 8 h. s und s.).

Die Ringmuskellage des E. turbinella.

Diese Lage ist über den ganzen Körper verbreitet. Im Hinterleib wenig entwickelt, nimmt sie in der Halsgegend an Dicke zu und erreicht am Bulbus eine bedeutende Mächtigkeit. Wieder verdünnt begleitet sie immer die Haut und ist deutlich wahrnehmbar bis zur Spitze der Proboscis, in deren vorderen Hälfte sie doch sehr dünn ist.

Die Muskelfäden sind wie bei anderen Arten in abgeplattete parallele Bänder angeordnet, doch so, dass hier und da längliche Spalten zwischen ihnen in solcher Weise entstehen, dass Bündel von Muskelfäden sich von einem Bande losmachen um zu einem anderen überzugehen. Diese Bänder grenzen doch nicht unmittelbar an die homogene Schicht, sondern werden durch das eigentliche Sarkolemm davon getrennt, das um die Bänder herum und untrennbar mit diesen vereinigt sich nach innen biegt und bald die Bänder eng umschliesst.

Das eigentliche Sarkolemm steht an mehreren Stellen — im Hinterleib, im Halse, und Proboscis — mit der inneren Grenzmembran der Subcuticula in Zusammenhang. Zu dieser Sache werden wir später zurückkommen.

Der Hinterleib. Bei dem Weibchen zeigt sich die Ringmuskellage zuerst wie ein Ring um den Ausführungs Hastings für die Embryonen, während sie bei dem Männchen um die Basis der Bursa herum beginnt.

Anfangs sind die Muskelbeutel sehr klein, nehmen nach vorn an Länge zu und werden 0,6 mm. lang. An den Längsschnitten zeigen sich die quergeschnittenen Bänder wie dünn Sicheln, die aus einer Menge Muskelfäden bestehen. Jeder von diesen hat am Querschnitt eine lang ausgezogene dreieckige Form und die nach innen gelegenen Spitzen gehen in das Protoplasmanetz, der Beuteln über. In dem Protoplasma der Fäden, das als Sarkoplasma bezeichnet werden kann, liegen die Muskelfibrillen eingebettet.

Ob die Muskelbeutel in eine oder mehrere Lagen angeordnet sind, ist sehr schwer zu konstatiren, denn im Allgemeinen besitzen sie eine unregelmässige Gestalt, was vermutlich von der Fixirung herrührt. Indessen kann ich fast mit Gewissheit behaupten, dass diese Beutel nur eine Lage bilden, weil ich an mehreren Schnitten Muskelsäcke gefunden habe.
ERNST BORSTRÖM, ÜBER ECHINORHYNCHUS TURB. BREV. U. PORRIG.
die sich von der fibrillären Partie der Ringsmuskellage bis zur Längsmuskellage streckten. Im Ganzen haben sie eine län-
lische Form und werden nach den Muskelbändern zu etwas
schmäler. Hier stehen sie auch in offener Verbindung mit
einander, was bisweilen auch in dem nach innen gewandten
Ende des Beutellagers der Fall ist.
Alle Schnitte durch die Säcke zeigten eine mehr oder
weniger grosse Anzahl ziemlich scharf begrenzter Löcher, die
natürlichlicherweise Cavitäten im Protoplasma angaben (Taf. II,
fig. 11. x). Ich nahm mir sogleich vor, den Grund hierzu auf-
zusuchen. Da es unmöglich war die Säckchen des Hinterleibes
zu isoliren, wandte ich mich zu denen des Bulbus und hier
konnte man leicht hier und da rundliche, glänzende Tröpfchen,
die im Protoplasma eingebettet lagen, wahrnehmen; sie kamen
doch sehr spärlich vor, was vermutlich daher kam, dass ein
groser Theil derselben von den Fixierungsflüssigkeiten auf-
gelöst war.
Wahrscheinlich hatten diese Tröpfchen einen fettartigen
Inhalt, und die rundlichen Cavitäten des Protoplasmas waren
ursprünglich mit solchen Bildungen angefüllt. Reservnah-
rungr wird also in den Muskelbeutel bisweilen wahrschein-
llich in bedeutender Menge aufbewahrt. Auch HAMANN (pag.
45) hat Reservnahrung im Protoplasma der Muskeln angeto-
roffen.
Ein Querschnitt durch den Hinterleib zeigt folgende An-
dordnung der Säckchen: Innerhalb der beiden Hauptkanäle
kommen gar keine vor, wenn man nicht als eine solche Bil-
dung eine daselbst an jeder Seite das Thieres durch den
ganzen Hinterleib verlaufende Röhre (Taf. V, fig. 44, Ro.)
betrachten will. Sie besitzt ungefähr dieselbe Consistenz wie
die Beutel, mit welchen sie gewöhnlich an den Seiten in
offener Verbindung steht. Sie spielt wahrscheinlich eine Rolle
bei der Vertheilung der Muskelflüssigkeit. Das Beutellager
nimmt dorsal und ventral an Grösse zu, die Körperhöhle bildet
also ein längliches Oval mit der grössten Ausstreckung in dem
Plan, der durch die beiden Seitenkanäle gezogen wird (Taf.
V, fig. 44).
Die oben erwähnten Verbindungen der Membrana limi-
tans mit dem eigentlichen Sarkolemm sind auch hier anzutreffen
und stimmen ganz mit denjenigen der Halsgegend, welche
später beschrieben werden wird, über ein.
Der Hals (Taf. I, fig. 6). Ungefähr in dem Masse wie der Hinterleib nach vorn schmäler wird, nimmt die Muskel- sacklage an Mächtigkeit ab, wogegen die Ringsmuskelnbänder und die homogene Schicht dicker werden. Hier ist das Beutellager nicht mehr entwickelt, als dass es ziemlich dicht die Muskelnbänder umschliesst. Also kommen hier keine eigentlichen Säckchen zu Stande, sondern nur Hülle um die Muskelnbänder herum, welche Bekleidungen theils durch das eigentliche Sarkolemm (es), theils durch die homogene Schicht (h. s.) dargestellt werden. Die letztere schiebt sich freilich im Hinterkörperein wenig, im Bulbus ziemlich lang zwischen die Beutel hinein, aber umgibt dort die Ringsmuskelnbänder nie ganz.

Die Verbindung der Membrana limitans mit dieser Muskel- lage wird in solcher Weise zu Stande gebracht, dass der innere Theil der ersteren an einem kleinen, begrenzten Gebiet sich nach innen senkt und, die homogene Schicht durchlaufend, in das eigentliche Sarkolemm übergeht (Taf. I, fig. 6 ver.). Hierdurch werden sattelförmige Bildungen erschaffen, die entweder eine hantelförmige oder eine keilförmige Form besitzen. Im Allgemeinen verlaufen sie in gerader, radiärer Richtung. Besonders dicht treten sie nicht auf, denn auf einem Längsschnitte habe ich nie mehr als zwei über demselben Muskelband ausgehen sehen.

Der Bulbus (Taf. II, fig. 11). Unmittelbar bei der Basis des Bulbus fangen die Muskelbandhüllen an weiter zu werden, so dass immer grössere und grössere Zwischenräume und somit reicheres Protoplasma nach innen zwischen den Bändern und ihrer Hülle entstehen. Die homogene Schicht wird dünner, aber scheint noch an der Bildung der Hülle Theil zu nehmen. Die Muskelfäden ordnen sich auch an den Seitenwänden des
Sarkolestms an, wodurch der Querschnitt eines Muskelbandes ein U-förmiges Bild darstellt. Schliesslich zeigen sich auch die eigentlichen Beutel (mb), welche hier eine festere Consistenz als diejenigen des Hinterleibes besitzen und eine einzige Lage bilden. Daher ist es mir gelungen grössere und kleinere derselben zu isoliren. Sie haben gewöhnlich die Form einer Flasche mit bedeutend angeschwollenem Bauch und einem langen Hals. Im ersteren ist fast immer ein ovaler, mit einem körnigen Körperchen versehener Kern vorhanden.

Die homogene Schicht (h. s.) rückt lang zwischen die Säckchen hinein (m), nicht länger aber als die Muskelbänder welche hier besonders tief nach innen dringen, und deren Fäden ungefähr dieselbe Form wie die des Hinterleibes zeigen. An der Stelle, wo der vordere dünne Abschnitt des Bulbus beginnt, verschwinden die Beutel schnell, und die Muskellage bekommt ein Aussehen, das demjenigen der Halsgegend gleicht. Darauf biegt das Lager um und zieht der Subcuticularfalte folgend, in die Proboscis hinein. In diesen Regionen hat das Lager folgenden Bau (Taf. II, fig. 8 r. m.): Die an den Querschnitten rechteckähnlichen, sehr dicht liegenden Bänder werden eng von einem Sarkolemm umschlossen, das wahrscheinlich fast nur von der homogenen Schicht gebildet wird. Die Bänder der Proboscis sind an den Seiten sehr abgeplattet und zeigen eine etwas unregelmässige Form.

Es ist schon bemerkt worden, dass die Ringmuskellage des Bulbus in die Proboscis hinein zieht. Indessen ist ihr Verlauf hier sehr kurz, denn sie wird schnell dünner und hört bei dem Blatt, das die homogene Schicht zur Umhüllung der Proboscisscheide entsendet, auf. Dicht vor der Ursprungsstelle dieser Scheide beginnt die Lage der Proboscis, setzt sich nach vorn bis auf ein Drittel der Proboscis fort und wird da plötzlich durch ein Blatt von der homogenen Schicht, das diesen Theil des Ringmuscularis der Proboscis (Taf. II, fig. 8 rm') ganz umhüllt, unterbrochen. Zwischen dieser Partie der Muskellage und der vom Bulbus an die Proboscis hinausgehenden Ringmuskelschicht haben grösstenteils die Längsmuskeln des Leibes ihren Ursprung. Die beiden vorderen Drittel der Proboscis sind mit einer einfachen, sich allmählich verdünnenden Ringmuskellage (Taf. II, fig. 8 rm") ausgerüstet, die nicht eine gerade nach vorn gehende Fortsetzung der Lage des hinteren Drittels darstellt, sondern gleich innerhalb ihres vor-

Die Verbindung der Membrana limitans mit dem Sarkolemm wird mittelst langer, schmaler und fädensförmiger Bildungen hergestellt und kommt nur im hinteren Abschnitt der Proboscis vor.

Die Längsmuskellage des E. turbinella.

Dieses Lager besteht aus zylindrischen, oft etwas abgeplatteten Fäden, die einen Durchschnitt von 0,03 bis 0,06 mm. zeigen. In der äussersten Peripherie beobachtet man ein dünnes Sarkolemm, das an den Stellen, wo die Muskeleylinder wie z. B. hier und da im Bulbus sehr dicht angehäuft stehen, bei benachbarten Cylindern zusammenschmelzen scheint.

Die Längsmuskeln des Hinterleibes sind wenig entwickelt wegen ihrer Beschränkung auf ein kleines Bereich an der Rücken- und Bauchseite. Sie beginnen am Hinterende mit sehr kleinen Verzweigungen um die Basis der Bursa, die sich zu immer grösseren Stämmen vereinigen um schliesslich die oben erwähnten Muskeleylinder darzustellen. Weil diese sich verästeln und hier und da durch Zweige mit einander in Verbindung treten, ist es schwer ihre Anzahl anzugeben, doch scheint dieselben zwischen zehn und sieben zu schwanken.

Der Hinterleib. Am stärksten ist die Lage an der Bauchseite entwickelt, was im ganzen Körper mit Ausnahme vielleicht des Receptaculums vorherrschend zu sein scheint. Die Muskeleylinder nehmen nach vorn allmählich an Dicke
zu und stehen überall mittelst feiner Sarkolemmfäden mit dem Muskelbeutellager, an welches sie sich dicht anschliessen, im Zusammenhang.

Die Kerne treten sehr spärlich auf, gleichen in Betreff des Baues und der Grösse denen des Bulbus, und sind sehr reichlich von Protoplasma umgeben. Einige (3—4) Kerne kommen am weitesten nach hinten vor, worauf die Stämme im Allgemeinen kernlos durch den Hinterleib ziehen um bei dem Übergange zum Halse mit ein paar Kernen versehen zu werden. Auch an den aufgeschwollenen Theilen, wo die Kerne gelegen sind, sind die Längsmuskeln ringsum mit einem gleichmässigen Lager Fibrillen ausgerüstet, was auch bei einem Theil der von Hamann untersuchten Arten der Fall ist.

Der Hals zeigt keine Eigenthümlichkeiten betreffend den Bau der Längsmuskellage. Im hinteren Abschnitt derselben bekommen die Muskeln ihre grösste Entwicklung um allmählich nach vorn dünner zu werden. Nur wenige Kerne können hier wahrgenommen werden.

Der Bulbus. Diese Lage ist hier besonders wohl entwickelt. Wir wollen zuerst den weiteren Verlauf der Muskelfäden, die vom Halse in das Receptaculum hineinziehen, betrachten. Diese nehmen nach und nach an Umfang ab, und schliesslich bleiben an der Rückenseite nur sechs bis sieben dünne Cylinder übrig, welche sich in zwei ziemlich weit von einander entfernte Bündel theilen. Die beiden Bündel (Taf. II, fig. 9 lm) verlaufen nach vorn sich dort verzweigend und werden somit umfangsreicher.

Die Längsmuskeln, die an der Bauchseite in das Receptaculum eindringen, sind klein und etwa zehn. Durch eine reiche Theilung und durch Zuschuss von der Ringsmuskellage vermehren sie sich sehr schnell nach vorn. An einem Querschnitt, in der Mitte des Receptaculum, zeigen sie sich als ein mächtiges Band zwischen dem Beutellager und der Proboscisscheide (Taf. II, fig. 9 lm). Dieses Band und die erwähnten beiden Bündel der Rückenseite schliessen sich nach vorn mehr und mehr um die Proboscisscheide zusammen und inseriren sich wie ein kompakter Ring an den Boden und die innere Perepherie der Subcuticularfalte, wo die Muskelfäden in der homogenen Schicht verschwinden. Wird eine Serie Querschnitte bei ihrer Insertionsstelle durch das Receptaculum gemacht, stellen sich folgende Bilder dar. Zuerst beobachtet
man einen Ring von quergeschnittenen Muskelelementen, die eine sehr kleine Centrallöhle besitzen und wo die Zwischenräume von Sarkolemm ausgefüllt sind, das nach vorn immer mächtiger wird, während die Cyliner an Dicke abnehmen. Schliesslich zeigen sich diese wie kleine Pünktchen in der homogenen Schicht und hören bald ganz auf. Dieser Theil der Längsmuskellage des Receptaculum zeichnet sich durch seinen Reichtum an fibrillärer Substanz und durch seine zahlreichen Kerne aus.

Wir haben also hier zwei ziemlich ungleiche Muskelsysteme zu beobachten, von welchen das eine dickwandige und
in seinem vorderen Abschnitt von übrigen Muskeln ganz getrenntes System als eine Fortsetzung der Längsmuskeln des Halses angesehen werden muss, das andere dagegen, das in seinem ganzen Verlauf sehr innig mit der Ringsmuskellage und den Beuteln derselben zusammenhängt, selbständig im Receptaculum wirkt.

Wenn dieses Muskelsystem in Thätigkeit tritt, was eine Verkürzung dieses Körperteiles verursacht, und die hier besonders wohl entwickelten Ringsmuskeln sich kontrahiren, wird ein grösserer oder kleinerer Druck auf die Körperflüssigkeit ausgeübt, woraus wahrscheinlich ein Herausschieben der Rüsselscheide mit Rüssel resultirt. Vielleicht trägt dieser Druck, indem er sich zu der in der Proboscis eingeschlossenen Flüssigkeit fortplantzt, auch zur Ausstülppung derselben bei.

Das Muskelsystem des E. brevicollis weicht nur in wenigen Punkten von demjenigen des E. turbinella ab. Die Ringmuskeln des Receptaculum (Bulbus) und des Halses zeigen hier etwa dieselbe Mächtigkeit wie bei E. turbinella und porrigens, wogegen der Hinterleib sich durch sehr dünne Ragsmuskelbänder auszeichnet, was vermutlich mit der ungewöhnlich geringen Dicke der Subcuticula in Zusammenhang steht. Die Muskelfiber sind überall sehr dünn.
und nach der Leibeshöhle zu mit einer schärferen Kante versehen. Die homogene Schicht und das eigentliche Sarkolemm verhält sich wie bei *E. porrigens*.

Die Muskelnbeutel stellen ein einziges Lager dar. Im Bulbus erreicht die Beutellage bei weitem nicht so bedeutenden Umfang wie bei voriger Art, denn die Längsmuskelbündel werden hier so zahlreich, dass wenig Platz für dieselbe übrig bleibt. Die Längsmuskeln des Hinterleibes sind wenig entwickelt: 3—4 Muskelcylinder an der Rücken-, 10—11 an der Bauchseite. In dem Halse angelangt nehmen sie an Grösse zu.

Das receptaculäre Längsmuskelsystem zeigt mit dem des *E. turbinella* eine grosse Ähnlichkeit, weshalb es nicht näher geschildert zu werden braucht. Ich will nur bemerken, dass es bei *E. brecicollis* eine ausserordentlich grosse Mächtigkeit gewinnt.

In Betreff der Dicke weichen hier die beiden Längsmuskelsysteme des Bulbus nur sehr wenig von einander ab.

Die Muskeln des *E. porrigens*.

In der Ringsmuskellage (Taf. I, fig. 5 r. mb) ist das eigentliche Sarkolemm wenig von der homogenen Schicht differenziert; doch kann man an den Stellen, wo diese dick genug ist — d. h. in der Halsregion — am nächsten um die Ringsmuskelbänder herum einen dunkel tingirten Rand wahrnehmen, der wahrscheinlich das eigentliche Sarkolemm ausmacht. Im Hinterleib ist ein eigentliches Sarkolemm der Ringsmuskelbänder möglichwerweise auch vorhanden, denn hier sind zwei, freilich gleich gefärbte, aber durch Zwischenräume hier und da getrennte Sarkolemmalagen (Taf. I, fig. 5 h. s. und s) wahrzunehmen, und da die gegen einander gewandten Flächen der beiden Schichten sehr eben und scharf begrenzt sind, kann man wohl kaum annehmen, dass sie durch das Bersten einer einzigen Lage, was ja bei der Härting geschehen kann, entstanden sind. Indessen ist es bisweilen unmöglich die beiden Lagen von einander zu unterscheiden, da beide sich sehr dunkel färben. Die Fibrillen der Ringsmuskelbänder des Hinterkörpers rücken bei vorliegender Art weit in die Beutel hinein, wo sie im Protoplasmanetz eingebettet und mit den eigentlichen Bändern parallel an einem Querschnitt des Thieres selbst das Bild eines Netzwerkes darstellen (Taf. I, fig. 5 fi. n.). Die grossen Beutel des Bulbus sind mit grossen, ellipsoidischen Kernen,
die mehrere einzelne oder in einen Haufen gesammelte Kernkörperchen besitzen, versehen.

Wir wollen nun die beiden Längsmuskelsysteme des Bulbus betrachten. Beide sind weniger entwickelt als bei E. turbinella.

Die drei Haufen, die das dickwandige System bilden, haben folgendes Aussehen: Das ventrale Band besitzt zwei seitliche Anhäufungen und streckt sich in der Medianlinie bis zur Ringsmuskellage hinaus. Die beiden dorsalen Bündel von Muskelcylin dern sind jedes nach vorn in zwei Blätter geschieden, von welchen das eine (Taf. I, fig. 1 b) so breit ist, dass es mit seinem inneren Rand die Lemnisci tangirt und an ihrer medianen Seite den oben erwähnten Muskelmantel (Taf. I, fig. 1 d) bildet.

Das zweite mehr dorsal gelegene Blatt ist unbedeutend und biegt sich mit seinem inneren Rand gegen dasjenige der anderen Seite. Weiter nach vorn begegnen diese einander und stellen somit ein einziges Band dar (Taf. I, fig. 1 a). Wie die Querschnitte angeben, sind die beiden Blätter jedes dorsalen Bündels durch eine einfache Lage bogenartig angeordneter Muskelcyliner (Taf. I, fig. 1 e) verbunden. Aussenhalb jedes dieser Bogen ist ein krummes Band dünnwandiger Muskeln (e) vorhanden. Wie bei E. turbinella tritt uns das dünnwandige Muskelsystem als acht getrennte Partien, welche an einem Querschnitt sich als halbeirkelförmige Bogen zeigen, entgegen. Zwei von diesen sind auf Taf. I, fig. 1 c. abgebildet. Eine eigenthümliche Bildung, die vielleicht als eine äussere Längsmuskellage betrachtet werden kann, und niemals vorher bei den Echinorhynchen beschrieben worden ist, habe ich bei E. porrigens angetroffen. Diese ist doch nur auf die Halsregion beschränkt, bildet eine zusammenhängende Lage und scheint aus dünnen, ziemlich unregelmässigen Cylindern zu

2 ...
Die Proboscis und Proboscisscheide.

Von der Proboscis ist, da sie mit dem gewöhnlichen Typus der Kratzer übereinstimmt, nur wenig zu sagen.

E. turbinella. Bei den sehr jungen Individuen aus B. musculus war die Proboscis immer mehr oder weniger eingestülpt. Die die Proboscis einstülpenden Muskeln sind mit nur wenigen Kernen gewöhnlicher Form versehen. Die Proboscisscheide besteht wie gewöhnlich aus zwei ringum gleichdicken, muskulösen Hüllen (Taf. II, fig. 8 ips u. äps), von welchen die innere ein wenig mächtiger als die äussere ist. Die diese Hüllen bildenden, etwas spiralförmig verlaufenden Muskelbänder zeigen hauptsächlich denselben Bau wie die Ringsmuskeln.

Was übrigens Söfftigen bei den von ihm untersuchten E. protens und angustatus in Beziehung hierauf angiebt, gilt auch für diese Arten, weshalb ich auf die Arbeit dieses Forschers hinweise. 1 Ich will nur Folgendes zufügen:

Das Sarkolemm ist hier wohl entwickelt und schickt sehr dünne, aber deutliche Septa zwischen die Bänder, die in hohem Grade abgeplattet sind, hinein. Ein Protoplasmanetz (Marksubstanz) der Muskeln kommt nur spärlich, besonders

1 Söfftigen. Morphologisches Jahrbuch. 1885 (pag. 135).

Bei *E. brevicollis* und *porrigens* begegnet uns in Betreff des Baues dieser Organe nur wenig Neues.

Ich will doch bemerken, dass beim ersteren die beiden Hüllen der Proboscis Scheide eine bedeutende Dicke erreichen, und dass die Muskelbänder der Scheide des letzteren reichlich mit Marksubstanz ausgerüstet sind.

sie Zweige ab, die sowohl mit dem Längs- als Ringsmuskellager verbunden sind. Ich habe bei *E. turbinella* den einen Muskelylinder eines Retraktors in einen kleinen Muskelbeutel eindringen und sich da auflösen sehen. Im vorderen Theil des Halses kann man noch die Retraktoren verfolgen; sie verschwinden allmählich nach hinten.

Die männlichen Geschlechtsorgane.

Bei ausgewachsenen Exemplaren betrug der ganze Geschlechtsapparat: bei *E. turbinella* etwa 15 mm., bei *E. brevicollis* ungefähr 12 mm. und der des *E. perrigens* etwa 45 mm. Die durchschnittliche Dicke des Theiles des Apparates, der

¹ SIEFFTIGEN, Morphologisches Jahrbuch. 1885 (pag. 145).
nur die Kittdrüsen mit den Samenleitern einschliesst, schwankt auch bedeutend. Während dieser Abschnitt bei *E. porrigens* (Taf. V, fig. 45, Ki. v.) nur 0,8, bei *E. brevicollis* 0,5 dick ist, zeigt ein Querschnitt durch denjenigen des *E. turbinella* einen Diameter, der bis 1 mm. erreichen kann.

Die Testes (Taf. III, fig. 19, t).

Diejenigen des *E. turbinella* sind bei jüngeren Individuen eiförmig, während sie bei älteren Exemplaren eine etwas dreieckige Gestalt annehmen. Die Testes des *E. porrigens* und besonders die des *E. brevicollis* sind mehr in die Länge gezogen, ja bisweilen mit fast zugespitzten Enden versehen. Bei allen drei sind diese Organe abgeplattet, was besonders für die beiden letzten gilt. An ausgewachsenen Individuen ist es schwer eine richtige Auffassung der Muskelbekleidung der Testes zu bekommen, denn diese ist bei ihnen bedeutend ausgedehnt. Sehr junge Exemplare dagegen zeigen eine Umläufig der Testes, die in Betreff ihres Baues ganz mit dem Ligamentum suspensorium übereinstimmt. In den kleinen, bei *Balamojo tera musculus* angetroffenen Individuen war der ganze Geschlechtsapparat wohl entwickelt vorhanden. Die Testes lagen hier ein wenig von einander entfernt und besassen eine ovale Gestalt. Wenn sie bei ihrem Zuwachs an Umfang zunehmen, berühren sie schliesslich einander.

Die Samenleiter. (Taf. III, fig. 19 und 23; Taf. IV, fig. 32, v. d.) Diese treten etwa in der Mitte (*E. porrigens* und *turbinella*) oder am hinteren Ende (*E. brevicollis*) von den Testes heraus, schwellen dicht hinter ihrem respektiven Testis zu einer Vesicula seminalis an und ziehen darauf weiter um nach kurzen Verlauf wieder eine solche Anschwellung zu bilden. Bald treten sie indessen zusammen und stellen das *Vas efferens* dar. Die Samenleiter machen das erste Drittel des Samenleitungsweges aus. Bei *E. brevicollis* kann man doch die Vasa deferentia länger nach hinten verfolgen, denn ehe sie zu einem Vas efferens zusammenschmelzen, treten sie drei besondere Male mit einander in offene Verbindung. Eine ähnliche Bildung hat SöFFTIGEN 1 für *E. claviceps* angegeben. Doch ist zu bemerken, dass bei jener Art die Verschmelzung der Vasa deferentia mit der Entwicklung von Vesicula seminales nicht nur die Kittdrüsen mit den Samenleitern einschliesst, schwankt auch bedeutend. Während dieser Abschnitt bei *E. porrigens* (Taf. V, fig. 45, Ki. v.) nur 0,8, bei *E. brevicollis* 0,5 dick ist, zeigt ein Querschnitt durch denjenigen des *E. turbinella* einen Diameter, der bis 1 mm. erreichen kann.

1 SöFFTIGEN. Morphologisches Jahrbuch. 1885 (pag. 157).
in Zusammenhang steht, was indessen hier nicht der Fall ist, denn bei vorliegender Art sind die Samenleiter an den Vereinigungsstellen nicht angeschwollen. Das Vas efferens besitzt wenigstens bei *E. turbinella* länger nach hinten eine oder zwei Aufreibungen, die wohl auch als Vesicula seminales betrachtet werden müssen, obgleich sie nicht eine so schlauchförmige Gestalt wie die oben erwähnten haben. Hierzu kommt bei mehreren Individuen eine Vesicula bei der Vereinigungstelle der beiden Vasa deferentia.

Im hinteren Theil der Genitalscheide ist das Vas efferens aufgeschwollen, wird nach dem Austritt aus dieser besonders dünn und mündet als Ductus ejaculatorius an der Spitze des Penis. Die die Samenleiter umgebende Hülle ist in ähnlicher Weise wie das Ligamentum suspensorium gebaut. Doch ist zu bemerken, dass in dieser Hülle sowohl als in derjenigen der Kittdrüsen die Differenzierung in Längsmuskulercylinder noch länger gegangen ist.

Die Kittdrüsen.

(Taf. III, fig. 19 und 23; Taf. IV, fig. 32, 33, 34, 35, 36, 37, 38 und 39 k.).

Die Kittdrüsen sind wie gewöhnlich sechs und erreichen z. B. bei den grösseren Exemplaren des *E. turbinella* eine Länge von 12 mm. oder darüber. Eine (selten zwei) von ihnen streckt sich bei allen drei Arten länger nach vorn als die übrigen und kommt so mit ihrer Spitze neben das hintere Ende des hinteren Testes zu liegen. Sie haben im Allgemeinen eine cylindrische Gestalt, nehmen nach hinten etwas an Umfang zu, um bei ihrer Eindringung in die Genitalscheide plötzlich in die dünnen Ausführungsgänge überzugehen. Ein Paar der Drüsen, das nach innen seinen Platz bekommen hat, ist im hinteren Theil seines Verlaufes weniger entwickelt, wird aber nach vorn mächtiger.

Bei *E. porrigens* haben die beiden centralen Drüsen eine sehr geringe Dicke und treten nicht als selbständige Bildungen auf, sondern verschmelzen während ihres ganzen Verlaufes bald mit der einen, bald mit der anderen benachbarten Kittdrüse.

Bei allen drei Arten zeigen die Drüsen eine ganz symmetrische Anordnung: drei an jeder Seite des Medianplanes, und schliessen die Vasa deferentia oder das Vas efferens zwischen
ERNST BORGSTRÖM, ÜBER ECHINORHYNCHUS TURB. BREV. U. PORRIG.

sich ein. Unmittelbar nach dem Übergang der Drüsen in die Ausführungsgänge (d. i. im vordersten Theil der Genitalscheide) kann man (Taf. IV, fig. 34. ak) jederseits drei deutliche Ausführungsgänge — einen für jede Drüse — beobachten. Werden dagegen Querschnitte ein wenig länger nach hinten gelegt, so finden wir, dass zwei von den Gängen jederseits zusammengeschmolzen und dass somit hier nur vier Ausführungsgänge vorhanden sind (Taf. IV, fig. 35. ak). Noch länger nach hinten haben sich diese zu zwei seitlichen Kanälen vereinigt (Taf. IV, fig. 36. ak). Unverändert setzen sich die beiden Ausführungsgänge nach dem hintersten Abschnitt der Scheide fort, wo sie zu einer bedeutenden Dicke anschwellen (Taf. IV, fig. 37. rk.), sich mit einander vereinigen (Taf. IV, fig. 38. rk.) und schliesslich, die Scheide verlassend, in einen einzigen, sehr dünnen Kanal (Taf. IV, fig. 39. ak), der das Vas efferens (ve) begleitet, übergehen. Dicht vor dem Penis verschmilzt er mit dem Vas efferens, wodurch ein Ductus ejaculatorius zu Stande kommt (Taf. III, fig. 23. de). SEFFTIGEN gibt für seine Arten an, dass die sechs Ausführungsgänge sich getrennt in einem Reservoir entleeren. Eine Bekleidung der Drüsen ist stets vorhanden. In völlig entwickeltem Zustand zeigt sich diese Hülle im Allgemeinen als eine dünne, fast strukturlose Membran, während sie bei sehr jungen Individuen aus deutlichen, zusammenhängenden Längsmuskelzylinderz zusammengesetzt ist. Der Inhalt der Drüsen besteht, wie auch SEFFTIGEN angiebt, aus rundlichen, lichtbrechenden Körnchen, die in Haufen angeordnet sind und den weiten Centralkanal, welcher die Drüsen durchbohrt, ganz erfüllen. Besonders glänzend werden die Körnchen bei Färbung mit Saffranin.

Die Genitalscheide

(Taf. III, fig. 23; Taf. IV, fig. 34, 35, 36, 37 und 38. m. s.)
Diese Bildung, einen hohlen Cylinder darstellend, ist von mehreren Verfassern bei anderen Arten eingehend beschrieben worden. In Betreff des histologischen Baus derselben sind auch keine Eigentümlichkeiten vorhanden.

Zwei Bündel Muskelzylinder lösen sich von den Längsmuskeln der Bauchseite ab und gehen nach dem Geschlechts-

1 SEFFTIGEN, Morphologisches Jahrbuch. 1885 (pag. 159 und 160).
apparat zu. An der Stelle, wo die Drüsen in ihre Ausführungsgänge übergehen, verlässt das Vas efferens seine centrale Lage, die Bündel schliessen sich ihm nahe an und ordnen sich nach aussen von diesem zu einem Band. Unmittelbar darauf verschwindet ein Theil des Bandes in die aus ringsverlaufenden Muskelbändern bestehende Wand der Scheide, wo gegen ein anderer Theil in die Scheide eindringt und während einer lebhaften Vermehrung ein kleines Bündel (Taf. IV, fig. 34, 35, 36, 37, 38. l m') an jeder Seite des ventral in der Scheide liegenden Vas efferens bildet. Die Bündel gehen durch die ganze Scheide, treten am hinteren Ende derselben aus und umgeben, bei der Bursa angelangt, diese mit dem Längsmuskellager. Sie sind als Retraktoren der Bursa zu betrachten. Nach hinten verschwand die Scheide zuerst an der ventralen Seite und löst sich in ein Band von Längsmuskeln (l. m."") auf, das sich nach hinten fortsetzt und sich mit einem anderen Band von Muskeln (l. m."), die von vorn kommen, vereinigt. Dieses ist auch, aber länger nach vorn, ventral von der Scheide ausgegangen und aus Muskelcylindern mit sehr dünnen Durchschnitt zusammengesetzt. Zwei dieser Cylinder sind im Bereich der Stelle, wo die Genitalscheide nach hinten aufhört mit einer ungewöhnlich grossen Anschwellung mit darin liegendem Kern versehen. Diese beiden Bänder treten mit einander in innige Verbindung (Taf. IV, fig. 39 l m", l m"), ziehen, indem sie mit den Längsmuskeln des Körpers während ihres Verlaufes in Zusammenhang stehen, nach hinten und lösen sich schliesslich in eine grosse Anzahl kleiner Muskelcylinder auf, welche in der Muskellage des Leibes allmählich verschwinden. Dieses Muskelsystem hat wahrscheinlich zur Aufgabe theils die Scheide in ihrer Lage zu halten, theils möglicherweise auch durch Ziehung des Genitalapparates nach hinten, die Ausstilpung der Bursa zu erleichtern.

Ein kleiner Theil der ventralen Wand der Scheide setzt sich, was SEFFTIGEN auch erwähnt hat, weiter nach hinten fort um die gemeinsame Hülle des Vas efferens und des Ausführungsganges der Kittdrüsen zu bilden. Diese Hülle ist folgendermassen gebaut (Taf. IV, fig. 39): Am äussersten Rande beobachtet man ein dünnes Sarkolemm, welchem nach innen eine Lage ringsverlaufender Muskelfibrillen (ä m) folgt. Der vordere Theil dieser Muskelscheide umschliesst eng die beiden Gänge, von welchen der Kittdrüsengang da mit einer
eigenen, muskulösen Bekleidung versehen zu sein scheint. Länger nach hinten kommt auch eine innere gemeinsame Muskellage (i. m.) hinzu. Somit können wir im hinteren Abschnitt dieser dünnen Scheide zwei Lagen Muskelsubstanz beobachten. Diese liegen hier doch nicht neben einander, sondern werden durch Muskelflüssigkeit mit spärlichen Protoplasmagrenzen geschieden. Die innere Lage hat durch strangförmige Auswüchse, die sie mit der äusseren vereinigen, eine unregelmässige Form erworben. Denselben Bau (zwei Ringsmuskellagen mit zwischen ihnen befindlicher Flüssigkeit) zeigt auch der Ductus ejaculatorius, wo die beiden Gänge zu einem zusammensfeschmolzen sind und der Penis.

Wahrscheinlich findet die Erection des Penis in der Weise statt, dass sich die äussere Muskellage der oben erwähnten, dünnen Gänge kontrahirt, und der Penis somit durch die nach hinten strömende, zwischen den Muskellagen befindliche Flüssigkeit ausgedehnt wird.

Der Ansicht von SIEFFTGEN (pag. 161), nach welcher der in der Genitalscheide gelegene Markbeutel bei der Erection möglicherweise eine Rolle spiele, kann ich wie HAMANN (pag. 79) nicht beitreten, denn diese scheint nicht mit dem Penis in näherer Verbindung zu stehen.

Penis ist in ruhendem Zustand fast eiförmig mit dem abgestumpften Ende nach hinten gerichtet und dringt nur ein wenig in die Bursa hinein.

Der Muskelmarkbeutel.

Das in der Genitalscheide gelegene Organ, welches von den Verfassern als Muskelmarkbeutel (Taf. IV, fig. 34, 35, 36, 37, 38 und 39; Taf. III, fig. 23. mb) bezeichnet worden ist, nimmt, wie bei anderen Arten den grösseren Theil der Scheide ein. Mit einem eiförmig angeschwollenen vorderen Abschnitt versehen, geht sie nach hinten in einen dünnen Stiel (Taf. IV,
fig. 39 st) über, dessen Wand nach hinten immer dünner wird und sich schliesslich in einige zusammenhängende Muskelröhren, die in die Muskulatur der Bursa übergehen, auflöst. Über die Function dieser Bildung haben SöFFTIGEN und HAMANN ihre Ansichten ausgesprochen. Nach diesen soll sie bei der Ausstülzung der Bursa die wichtigste Rolle spielen.

Durch Kontrahierung ihrer muskulösen Wand wird nämlich nach SöFFTIGEN ein Druck hervorgerufen, der durch die in dem Beutel befindliche Flüssigkeit nach hinten fortgepflanzt wird und die Ausstülzung verursacht.

Die Ansicht HAMANNs weicht etwas von der SöFFTIGENS ab, denn nach jenem soll der nach hinten gehende Druck des Beutels den Inhalt der Ausführungsgänge mit aller Gewalt nach hinten treiben. Da der hintere Theil des gemeinsamen Ganges sehr eng ist, soll die Bursa dadurch nach hinten gedrängt und ausgestülpt werden. Die letztere Ansicht scheint mir die wahrscheinlichste zu sein.

Die Bursa (Taf. IV, fig. 40 und Taf. III, fig. 23).

Obgleich dieses Organ bei diesen drei Arten in manchen Fällen mit demjenigen des E. clavula, welchen Hamann beschreibt, überinstimmt, will ich des Zusammenhanges wegen doch eine ziemlich eingehende Beschreibung desselben liefern.

Die Bursa ist in gehärtetem Zustand gewöhnlich in dem Längsplan, der durch die beiden Bursaltaschen gezogen wird, abgeplattet und besitzt einen relativ kleinen Umfang. In der hinteren Partie derselben besteht die Wand nur aus einer Subcuticula, während der obere Abschnitt überdies eine nach aussen gelegene eigenthümliche Muskelschicht besitzt. Die Wand des oberen Theiles bekommt somit folgenden Bau. In der Peripherie beobachten wir eine Schicht von längsgehenden Muskeleyllindern (l. m.). Innerhalb dieser folgt eine Muskelilage, die in ihren äusseren (r. m.') und inneren (r. m.) Partien mit ringsgehenden Muskelfibrillen versehen ist. Die innere Fibrillenlage erreicht eine grössere Mächtigkeit als die äussere. Der Zwischenraum wird von Muskelflüssigkeit, Protoplasma und sich verzweigenden, dünnen Muskelfäden (rf.), die wahrscheinlich aus mehreren Fibrillen bestehen und den Raum in radiärer Richtung durchsetzen, ausgefüllt. Die Muskelilage wird nach innen von einem Sarkolemm, das auch die Papillen überzieht, begrenzt.
Im Innern können wir eine Subcuticula (s) wahrnehmen, in welche eine grosse Menge papillenförmige Auswüchse (p), ohne entsprechende Erhebungen an der Fläche der Subcuticula darzustellen, von der Muskellage aus hineindringen. Sie werden wie die Fibrillenlage dunkel gefärbt. Ob sie fibrilläre Substanz einschliessen, habe ich nicht beobachten können.

Die Papillen betreffend gibt Hamann (pag. 81) wenigstens bei einer seiner Arten an, dass sie mit dem innerhalb der inneren Fibrillenlage befindlichen Zwischenraum in offener Verbindung stehen. Dies scheint bei vorliegenden Arten nicht der Fall zu sein.

Die Function der Papillen ist schwer zu verstehen. Eine ihrer Aufgaben ist wahrscheinlich eine innige Verbindung zwischen Subcuticula und Muskellage zu Stande zu bringen. Für eine solche Annahme spricht so wohl die Form der Papillen — sie bestehen nämlich aus einem kurzen Stiele und einer in der Subcuticula befindlichen Partie — als auch der Umstand, dass eine feste Verbindung oben erwähnter Lagen der Bursa hier erforderlich ist, denn die Muskeln, die bei der Zurückziehung der Bursa Dienste leisten, enden ja in die Muskellage und eine Trennung der Subcuticula von dieser würde sonst bei einer schnellen Einziehung der Bursa stattfinden können.

Man hat früher diesen Papillen die Bedeutung von Empfindungsapparaten zugeschrieben, was auch nicht unwahrscheinlich sein dürfte, obgleich man bisher keine zu ihnen ziehende Nervenfasern beobachtet hat. Nach hinten ziehende, fingerähnliche Auswüchse von der Muskelpartie der Bursa, welche Söfftigen und Hamann bei ihren Arten erwähnen, fehlen hier ganz. Die Bursaltaschen (bt) werden von einer relativ dicken Subcuticula, die sich zwischen äussere und innere Ringmuskellage der Bursa hineinschiebt, gebildet. Die Subcuticula des vorderen Abschnittes der Bursa ist mit einem reichen Kanalsystem versehen und besitzt wenige, sehr kleine Kerne.

Die weiblichen Geschlechtsorgane.

Bei allen drei Arten habe ich in Entwicklung begriffene Zellenpakete (Eiballen) angetroffen.
Bei einem 6 mm. langen, weiblichen, sehr jungen *E. turbinella* beobachtete ich folgendes:

Die Zellenpakete (Taf. IV, fig. 41. z. p.) lagen in zwei Haufen (Ovaria), die gewöhnlicherweise ungleiche Grösse hatten, oder auch waren diese zu einem zusammengeschmolzen. Die Pakete wurden mit einer Hüle vom Ligamentum umgeben und bestanden nur aus wenigen Zellen. In Betreff der Entwicklung der Eiballen bei *E. gigas* sagt Kaiser (Zoologischer Anzeiger 1887, pag. 431): »Die Ligamentkerne wandeln sich beim Weibchen in rosettenförmige Zellhäschen um. Aus den Theilstücken entstehen kleine Syncytien, die allmählich zu ovalen Scheiben herauswachsen, vom Ligamente sich loslösen und als »freie Ovarien« in den Ligamentsäcken umher schwimmen.»

Dies stimmt gar nicht mit der Entwicklung der Eiballen vorliegender Art überein, denn die Kerne des Ligaments nehmen hier an der Bildung der Ovarien gar keinen Theil; sie können nämlich, wie meine Abbildung (Taf. IV, fig. 41. k) angiebt, auch nach einer Differenzierung in Zellenpakete wahr genommen werden. Auf oben erwähnter Figur liegen die Kerne freilich in der unmittelbaren Nähe der Ovarien; bei anderen Exemplaren dagegen waren sie auch von den Ovarien entfernt. Weiter ist zu bemerken, dass die Eiballen, wie die Figur auch zeigt, in ihren früheren Entwicklungsstadien keine Syncytien sind, sondern erst später in ihrem Inneren einen syncytiosen Charakter anzunehmen scheinen.

Eine Analogie zwischen der Umhüllung der Ovarien und Testes ist wahrscheinlich hier zu finden, indem in beiden Fällen nur ein Theil des Ligaments zur Umkapselung derselben Organe benutzt wird, während der andere Theil neben ihnen nach hinten fortsetzt.

Menge Eiballen auf verschiedenen Entwicklungsstadien ein- schleissen, war etwa 2 mm. vor der Glocke gelegen.

Bei einem 80 mm. langen Individuum des *E. porrigens*, wo sich Eiballen, nicht aber entwickelte Embryonen, in der Leibeshöhle fanden, konnten noch ein wenig vor der Glocke aus dem Ligament sich entwickelnde Zellenpakete wahrgenommen werden.

Die Eiballen

Das Ligamentum suspensorium besitzt denselben Bau wie für den Genitalstrang des Männchens angegeben wurde. Der Apparat, welcher die Embryonen aus der Leibeshöhle entfernt, hat bei den verschiedenen Arten folgende Länge:

Bei einem 80 mm. langen Exemplar des *E. porrigens* 4,5 mm.,

ausgewachsenen Individuen

- *E. brevicollis* etwa 5
- *E. turbinella* 7,5

Im Apparat haben wir die gewöhnlichen Abschnitte zu beobachten: den s. g. Schluckapparat, der die Glocke, die je aus einem Zellenpaar bestehenden Eileiter und noch andere Zellen umfasst, den Utérus und die Vagina.
Der Schluckapparat (Taf. II, fig. 10, und Taf. III, fig. 13, 14, 15, 16, 17, 18).

Dieses Organ erreicht bei *E. turbinella* eine Länge von etwa 0,65 mm. Es hat bei allen drei Arten einen sehr ähnlichen Bau.

Das Ligament tritt in der Gestalt eines kompakten Bandes und mit der dorsalen Wand der Glocke fest verbunden in die Glocke hinein, wo es, ehe der Glockengrund erreicht wird, mit zwei von reichlichem Protoplasma umgebenen Kernen versehen ist. Entweder zieht das ganze Ligamentum in die Glocke hinein (*E. turbinella*) oder inserirt sich ein kleiner Theil desselben an der Aussenwand der Glocke (*E. porrigens und brevicollis*).

Die Glocke nimmt gegen die Basis etwas an Umfang ab. Hier ist sie an den Stellen, wo die Wand zur Bildung der Taschen ausbiegt, jiderseits mit einer Anschwellung, die einen grossen Kern enthält, versehen.

Auf der dorsalen Seite bildet die Glockenwand zwei relativ grosse Ausstiulpungen, welche Seitentaschen genannt worden sind. (Taf. III, fig. 15 s. t.). Andere Verfasser wie z. B. Sefftigen geben an, dass sie aus selbständigen Zellen bestehen. Dies mag wohl auch hier der Fall sein, dann aber muss eine Verschmelzung schon früh stattgefunden haben, denn ich habe auch bei ziemlich jungen Exemplaren keine Grenze zwischen der Taschen- und Glockenwand gefunden. Die Form der Taschen ist länglich. Bei *E. turbinella* sind ihre Spitzen häufig kugelig angeschwollen, was dann besonders bei den grössten Individuen der Fall zu sein scheint. Zwischen den Taschen beobachteten wir die dorsale Glockenöffnung (Taf. III, fig. 15 d. oe.). Eine ventrale Öffnung, die bisher nur bei *E. angustatus* von Sefftigen angetroffen worden ist, kommt hier nicht vor. In Bezug auf den histologischen Bau der Glocke weise ich auf die Arbeit von Sefftigen (pag. 147 u. 148) hin. Um die Abbildungen verständlich zu machen will ich nur bemerken, dass wir zwei Lagen beobachten können: eine äussere aus ringsgehen den Muskelfibrillen bestehende Schicht und eine innere Marklage.

Folgen wir dem Ligamentum länger in die Glocke hinein, finden wir bald eine grosse Zelle (Taf. III, fig. 14 a.), die an ihrer ventralen Seite von dem Ligamentum (l) umschlossen

Die Zellen b weichen von den übrigen Zellen durch ihr homogenes Aussehen ab, nur in der Mitte sind einige kleine Lücken vorhanden. Kein Protoplasmanetz kann man hier wahrnehmen, was wohl darauf beruht, dass die kontraktile Substanz so reichlich entwickelt ist. Die oben erwähnte Zelle a schwillt in der hinteren Partie des Schluckapparates zu bedeutender Grösse an (Taf. III, fig. 17, 18. a), ist da mit genanntem, unpaarigem Kern versehen und wird von den Eileitern (fig. 17, 18. b.) durchbohrt. Diese angeschwollene Partie, die bei E. turbinella am grössten ist, enthält eine bedeutende Menge fibrillärer Muskelsubstanz. Diese ist besonders um die Eileiter herum konzentriert und strahlt von da in radiärer Richtung aus (Taf. III, fig. 17, 18. a). Im hinteren Theil ihres Verlaufes sind die Eileiter durch einen Zwischenraum von der umgebenden Zelle getrennt.

Die Glockenwand geht nach hinten an der ventralen Seite in eine grosse, den grössten Theil des Glockenboden bildende Anschwellung (Taf. III, fig. 16, 17, 18. g. g.) ohne Grenze über. Die Anschwellung wird nach hinten allmählich dünner und streckt sich nebst den Eileitern bis innerhalb des oberen Rands des Uterus.

Bei E. porrigens sind die paarigen Kerne der Glocke nach vorn gerückt und liegen dicht neben einander und ventral in der Glockenwand eingebettet. Übrigens wird bei derselben Art auch das hintere Ende der Zelle a vom oberem Rande des Uterus umschlossen.

Der Schluckapparat dieser Arten weicht bedeutend von den vorher beschriebenen ab. Er scheint doch, wenigstens in seinen hinteren Abschnitten, am meisten demjenigen zu gleichen, welchen Knüpffer\(^1\) bei *E. strumosus* schildert.

Der Uterus (Taf. III, fig. 20, 21; Taf. V, fig. 46, u) z. B. eines ausgewachsenen *E. turbinella* erreicht eine Länge von etwa 6 mm. und wird in seinem vorderen Theil ungefähr 0,75 mm. breit.

Dem vorderen, angeschwollenen Abschnitt folgt eine dünne, gleichbreite Partie (Taf. V, fig. 46. u.). Die Wand des ersteren wollen wir zuerst betrachten.

Wenn ein Flächenpräparat von dieser untersucht wird, beobachtet man eine Menge spaltenförmiger, lichter Flecken. Wie Längs- und Querschnitte angeben, besteht das Gewebe aus kontraktilem, jederseits die Markräume umschliessender Muskelsubstanz, und sowohl nach innen als nach aussen aus Sarkolemm. Die lichten Flecke kommen in der Weise zu Stande, dass die Muskelsubstanz auf diesen Stellen unterbrochen wird, und somit nur Sarkolemm da übrig bleibt. Was Söfftigen (pag. 153) in Bezug auf seine Arten angiebt, dass der Uterus gleich gebaut sei wie die Glocke, ist hier nicht der Fall, denn die fibrilläre Substanz ist hier rings um die Markräume angeordnet und wie oben gesagt hier und da unterbrochen.

Einen ähnlichen Bau besitzt auch der vordere Abschnitt der dünnen Partie des Uterus, wo der auf Taf. III, fig. 20

\(^1\) Knüpffer. Mémoires de l'Académie de St Pétersbourg VII Série. 36 pag. 9. fig. 20—25.
abgebildete Querschnitt gelegt ist. Hier liegen doch die leichten Flecke bei weitem nicht so nahe an einander als in oben beschriebenem Theil des Uterus. Die hinterste Partie des Uterus (Taf. III, fig. 21) ist in folgender Weise gebaut: In der äussersten Peripherie beobachten wir ein dünnnes Sarkolemm (s). Innerhalb desselben folgt ein mächtiges Lager ringsgehender Muskelfibrillen (ä. r. m.), von welchem radiäre Fibrillen (r. f.) nach innen strahlen. Dem Lumen am nächsten, das von Sarkolemm (s) ausgekleidet ist, finden wir eine dünne Muskellage (i. r. m.), die wahrscheinlich auch aus ringsverlaufenden Fibrillen besteht. Die radiären Fibrillen weichen während ihres Verlaufes hier und da aus einander und bilden somit ein aus einigen längsgehenden Kanälchen (l) bestehendes Kanalsystem. Besonders wohl entwickelt ist dieses Kanalsystem bei E. porrigens, wo die Kanäle weit und cylindrisch sind.

Unmittelbar bei dem hinteren Ende des Uterus liegen seine beiden Kerne sehr nahe einander, jederseits des Medianplains in die hier angeschwollene Wand eingelagert. Besonders grosse Protoplasmaanhäufungen um die Kerne herum finden wir bei E. brevicollis (Taf. III, fig. 21. p. n.).

Die Längsachse der ellipsoidischen Kerne eines E. porrigens war etwa 0,04 mm. lang.

Die Vagina (Taf. III, fig. 22).

Die Vagina streckt sich ein wenig in den Uterus (u) hinein, dessen Wand allmählich in den äusseren Muskel sphincter übergeht. Sie besteht aus drei ziemlich scharf abgesetzten Abschnitten, von welchen der kleine mittlere (v") von dem inneren Sphincter (i s) umfasst wird, während die vordere und hintere (v' und v"") Partie nur vom äusseren Sphincter (ä. s.) umgeben sind.

Nur im hinteren Theil der Vagina können wir Kerne und zwar vier beobachten, die denjenigen der Subcuticula sehr gleichen. Auch andere Ähnlichkeiten mit der Subcuticula sind anzutreffen. Besonders ist dies der Fall mit dem hinteren Abschnitte, wo sowohl radir- verlaufsene und ringsgebende Fasern als auch ein Kanalsystem vorhanden ist. Übrigens geht dieser Theil der Vagina ohne Grenze in die Subcuticula über.
Nach dem Bau zu urtheilen erscheint mir die Vagina als eine epidermale Bildung.

SEEFFTIGEN und HAMANN haben als ihre Ansicht ausgesprochen, dass die Vagina drüsiger Natur ist. Dies ist wohl möglich, aber wozu würden ihre Absonderungsprodukte dienen? Eine besondere Flüssigkeit für die Fortschaffung der Embryonen ist ja nicht von Nöthen, denn es gibt ja die überall eindringende Nahrungsfüssigkeit. Von einer Absonderung der Reservnahrung kann auch nicht die Rede sein. Also würden nur die Annahmen übrig bleiben, dass das Vaginarohr entweder Produkte absondert, welche den in die Vagina eingetretenden Spermatozoiden nützlich sein können, oder dass es als ein Excretionsorgan fungirt.

Jenes ist kaum glaublich, wenn man bedenkt, dass die Nahrungsfüssigkeit der Körperhöhle, von welcher die Spermatozoiden sich ernähren, wahrscheinlich schon hier ihnen begegnet. Dieses kommt auch unwahrscheinlich vor.

Im äusseren Sphincter finden wir die Fibrillen in Bänder abgetheilt, die spiralförmig verlaufen. Die Fibrillen des inneren Sphincters, wo keine Bänder vorhanden sind, ziehen nicht wie genannte Bänder parallel mit der Wand der Vagina, sondern gehen bogenförmig von der Peripherie nach innen. Die zwei Kerne des äusseren Sphincters (k) sind in den halbkugelförmigen Auswüchsen eines Muskelbandes gelegen. Auch der innere Sphincter besitzt wie gewöhnlich zwei Kerne (k'), die in seinem Inneren eingesenkt liegen.

Das Nervensystem.

SEEFFTIGEN und HAMANN haben neuerlich das Nervensystem bei ihren Arten eingehend beschrieben. Meine kurze Darstellung desselben bei vorliegenden Arten weicht besonders in Bezug auf die Lage des Ganglions, den Verlauf der Rüsselnerven und die Lage der hinteren Seitennervenstämmle von den ihren ab.

Das Ganglion liegt bei meinen Arten im vorderen Theil der Proboscisscheide (Taf. II, fig. 8. g.), etwas dorsal gerückt.

Bei den beiden, eben erwähnten Arten sind die vorderen Seitenstämme nur aus wenigen Fasern zusammengesetzt. Weiter können wir fast immer im Rüssel zwei mediane, nur aus je einer Nervenfaser bestehende Nervenstämme beobachten.

Nach hinten ziehen zwei grosse Seitenstämme, die dicht hinter dem Ganglion die Scheide durchbohren. Dann werden sie von den s. g. Retinacula umschlossen. Hier sind diese von einigen, groben Muskelcylindern mit dickem Sarkolemm zusammengesetzt.

Im Hals und Hinterkörper, wo ein längsgehendes Rohr, wie früher erwähnt wurde, an den Seiten vorhanden ist, liegen die Fasern in der Aussenwand des Rohres eingebettet.
Die Zahl der Fasern wird nach hinten allmählich geringer, und schliesslich können nur zwei oder eine Faser wahrgekommen werden.

Das Geschlechtsganglion des Männchens hat das Aussehen eines krummen Hantels — zwei seitlich gelegene Anschwellungen, die durch eine Kommissur verbunden sind. Es enthält einige grosse Zellen und fibrilläre Substanz. Bei _E. porri-genus_ habe ich Nervenzellen mit einem Durchschnitt bis 0,1 mm. angetroffen. Die zwei grössten waren mit zwei Kernen versehen. Die Taf. I, fig. 2 zeigt uns eine solche Zelle im Durchschnitt. Das Ganglion hat etwa an der Stelle, wo die beiden Kittdrüsengänge sich in den gemeinsamen Reservoir ausleeren, seinen Platz (Taf. IV, fig. 38. g. g.).

Das Zustandekommen der Verbindung zwischen diesem Ganglion und den seitlichen Nervenstämmen ist mir nicht gelungen zu beobachten.

Zusammenfassung der wichtigsten, anatomischen Eigenthümlichkeiten vorliegender Arten.

Die Cuticula.

Die Subcuticula.

1) Die längs- und ringsverlaufenden Fasern sind nicht zu deutlichen, zusammenhängenden Schichten vereinigt, was für vorher beschriebene Arten (_E. claviceps, proteus, haenca, acus, polymorphns, clavula_ u. a.) angegeben worden ist, sondern sind überall mit einander sehr innig zusammengefilzt (Taf. I, fig. 6).

2) Einen Ringkanal, der bei vorher untersuchten Arten gefunden worden ist, habe ich nicht angetroffen.¹

¹ Kaiser (Bibliotheca zoologica. Heft. 7, pag. 30) gibt an, dass er bei _E. brevicollis_ einen Ringkanal gefunden hat.
3) Bei *E. porrigens* beobachtet man neben der Membrana limitans ein dünnles Lager von sehr dicht bei einander stehenden Längs- und Ringsfasern (Taf. I, fig. 5. x). Dies scheint für diese Art auszeichnend zu sein.

5) In der Halsregion des *E. turbinella* treten ausser den beiden Seitenkanälen auch ein dorsaler und ventraler Hauptkanal auf.

6) Bei *E. turbinella* und *brevicollis* erreicht die Subcuticula am vorderen Theil des Bulbus, wo die Haken eingesenkt sitzen, eine relativ sehr grosse Mächtigkeit.

7) Die Subcuticula des *E. brevicollis* zeichnet sich durch ihre geringe Dicke (etwa 0,066 mm.) aus.

Die Lemnisci

2) In Betreff der Lemnisci des *E. porrigens* ist ihr verhältnismässig zur Grösse des Thieres geringer Umfang und ihr unvollständiger, nur die vorderen Abschnitte derselben umfassender Muskelmantel (Taf. I, fig. 1) zu bemerken. Wahrscheinlich ist vorher bei keinem Kratzer ein solcher Muskelmantel erwähnt worden.

Die Ringsmuskelkllage.

1) Die Ringsmuskelkllage ist durch ihre ungewöhnlich reich entwickelte Marklage (Muskelbentellage) ausgezeichnet (Taf. I, fig. 5 und Taf. II, fig. 11).

2) Der den Ringsmuskelbändern am nächsten liegende Theil der flächenhaft ausgebreiteten Schicht, welche die Bänder von der Subcuticula trennt, färbt sich viel dunkler als die übrige Partie derselben (Taf. I, fig. 6). Um meine Darstellung zu verdeutlichen, habe ich jenen das eigentliche Sarkolemm, diese die homogene Schicht genannt. Wahrscheinlich sind

3) Reservnahrung wird in der Gestalt von fettartigen Tröpfchen in den Muskelbeuteln aufbewahrt.

4) Bei allen drei Arten sind dicht innerhalb der Ringsmuskelnbänder an jeder Seite eine durch Hals und Hinterkörper ziehende Röhre vorhanden (Taf. V, fig. 44. Ro.), deren Wand aus Sarkolemm besteht. Sie stehen hier und da mit den benachbarten Muskelbeuteln in offener Verbindung. Ähnliche Röhren sind nach Leuckart auch von Westrum bei *E. gigas*, aber dorsal und ventral, bemerkt und später auch von Leuckart und Schneider bei derselben Art angetroffen worden.

5) Die Grenzmembran der Subcuticula steht durch satten-förmiige Bildungen, die die homogene Schicht durchlaufen, mit dem eigentlichen Sarkolemm in Verbindung (Taf. I, fig. 6. ver.).

6) Die Ähnlichkeit zwischen den Muskelbeuteln des Bulbus und denjenigen mancher Nematoden ist sehr gross (Taf. II, fig. 11).

7) Bei *E. porrigens* findet sich fibrilläre Muskelsubstanz auch innerhalb der Muskelbänder im Protoplasma der Beutel eingebettet (Taf. I, fig. 5. fi. n.). Dies ist für diese Art eigenthümlich.

8) Die Ringsmuskelnbänder des *E. brevicollis* zeichnen sich durch ihre geringe Dicke aus.

Die Längsmuskellage.

1) Auch an den Stellen, wo Kerne und somit viel Protoplasma gelegen sind, ist kontraktile Substanz rings um die Muskelfäden ausgeschieden (Taf. I, fig. 4). Dasselbe hat HAMANN vorher für *E. harrow* angegeben.

2) Die Längsmuskeln sind auf einen kleinen dorsalen und ventralen Streifen beschränkt.

3) Die Längsmuskeln des Bulbus sind besonders wohl entwickelt, was im Allgemeinen bei bulbustragenden Kratzern der Fall zu sein scheint, denn in Betreff des *E. proteus* sagt SEFFITGEN (pag. 133): „Die Längsmuskeln des Halses von *Ech. proteus* gehen auf den Bulbus über, bilden hier ein regelmässiges, weitmaschiges Netz und
4) Im Bulbus finden sich oft in derselben Anschwellung eines Muskeleyinders 2, ja bisweilen noch mehr Kerne, die je mit einem Protoplatmanetz umgeben sind.

5) Der Hals des *E. porrigens* hat sehr eigenthümliche Bildungen aufzuweisen, welche in der Gestalt ziemlich unregelmässiger Cylinder dicht innerhalb der Subcuticula auftreten. Sie sind vielleicht als eine äussere Längsmuskellage aufzufassen. Solche Bildungen dürften immer vorher bei Kratzern wahrgenommen worden sein (Taf. 1, fig. 3. lm.).

Die Geschlechtsorgane.

1) Das Ligament ist bandförmig und umschliesst bei seiner Austrittsstelle aus der Proboscis scheide den dorsalen Retraktor derselben mehr oder weniger. Wenigstens das erstere scheint für diese Arten eigenthümlich zu sein (Taf. IV, fig. 43).

2) Zwei Ovarien wurden bei jungen *E. turbinella* und *brevicollis* angetroffen. Sie waren mit einer Hülle von Ligamentum versehen. Solche Ovarien sind wahrscheinlich nicht vorher bei so wohl entwickelten Individuen der Kratzer wahrgenommen worden. Taf. IV, fig. 41.

3) Der Schluckapparat besteht aus 14 Zellen, von welchen einige mit einander verschmolzen sind. Im Schluckapparat des *E. herucea* hat Hamann 9 Zellen beobachtet, während Seufftingen bei *E. claviceps* 12, bei *E. angustatus* 15 Zellen erwähnt. Mit Ausnahme der Zellen a, d und gg (Glocken grund), die auf Taf. III, fig. 14, 15, 16, 17 und 18 zu sehen sind, können die Zellen des Schluckapparates vorliegender Arten leicht mit denjenigen oben erwähnter Arten verglichen werden.

4) Der Uterus weicht durch das Auftreten sowohl einer inneren als äusseren Ringsmuskelfibrillenlage in seinem Bau von demjenigen vorher beschriebener Arten bedeutend ab. Hierzu kommt als eine zweite Eigenthümlichkeit, dass, wie die Figuren 20 und 21 auf Taf. III zeigen, der vordere und hintere Abschnitt des Uterus in Betreff des Baues sehr ungleich sind. Auch die Form des Uterus ist eigenthümlich (Taf. V, fig. 46. u.).

5) Die Vagina (Taf. III, fig. 22 und Taf. V, fig. 46. v.) zeigt drei Anschwellungen, von welchen die mittlere, die von inneren Sphincter umfasst ist, sehr geringe Grösse besitzt. Nur vier grosse Kerne sind in der Vagina vorhanden und zwar im

Der äussere Sphincter ist in deutliche Bänder getheilt, was für diese Arten eigenthümlich zu sein scheint.

6) Die Samenleiter verlassen die Testes etwa bei ihrer Mitte oder noch länger nach hinten und treten weit vor der Genitalscheide zu einem Vas efferens zusammen (Taf. III, fig. 19). Bei vorher beschriebenen Arten gehen die Samenleiter erst in der Genitalscheide in ein Vas efferens über und entspringen vom vorderen Theil der Testes.

8) Dass die Ausführungsgänge der Kittdrüsen schliesslich zu einem Gang zusammentreten, der vom Vas efferens getrennt fast bis zum Penis zieht, ist nicht vorher beobachtet worden. Bei anderen, vorher anatomisch behandelten Arten münden die am häufigsten auf zwei reducirten Kittdrüsengänge im hintersten Abschnitt der Genitalscheide in das Vas efferens aus (Hamann, Søfftigen u. a.).

10) In Betreff der Bursa ist zu bemerken, dass sie ausser Ringsmuskellagen auch ein oberflächliches Lager von Längsmuskelzylindern besitzt (Taf. IV, fig. 40 l). Weder Søfftigen noch Hamann sprechen bei ihren Arten von einer solchen Lage. Fingerähnliche Auswüchse von der Muskellage der Bursa, die allgemein bei den Echinorhynchen vorkommen, fehlen hier ganz.

Das Nervensystem.

1) Das Ganglion ist im vorderen Abschnitt der Proboscis- scheide gelegen. Wie vorhergehende Verfasser angeben, liegt es im Allgemeinen im hintersten Theil derselben.

3) Im Geschlechtsganglion sind bei *E. porrigens* ein Paar ungewöhnlich grosser Nervenzellen vorhanden, die mit zwei Kernen ausgerüstet sein können (Taf. 1, Fig. 2).

Wie aus Obigem hervorgeht, stimmen die drei Arten auch in Betreff der Anatomie nahe überein. Von den Organen haben die Subcuticula und die Lemnisci die meisten Unähnlichkeiten aufzuweisen, wogegen besonders die Geschlechtsorgane und der Rüssel mit Scheide nur in sehr vereinzelten Fällen von einander abweichen.

Nachtrag.

Weiter giebt er an, dass der Rüssel des *E. porrigens* nur vier Reihen Haken besitzt. Eine bedeutende Schwankung in der Zahl der Hakenreihen muss also bei vorliegender Art stattfinden können.
Verzeichniss der wichtigsten Arbeiten über die Echinorhynchen.

Diesing. Systema Helminthum. Vindobonæ 1850.

1 Überall wo ich in meinem Aufsätze auf die Arbeit Hamanns hingewiesen habe sind die Paginahinweisungen von einem besonderen Abdruck vorliegender Arbeit aus der Jenaischen Zeitschrift gehört.
Figurenerklärung.

Taf. I.

Fig. 1. *Echinorhynchus porrigens*: Querschnitte durch die Lemnisci, Proboscisscheide und Theile des Längsmuskelsystems des Bulbus. Sublimatfixierung. Hämatoxylinfärbung. 1 Nachet. (a, b, c) dickwandiges Längsmuskelsystem; (c) Theile des dünnwandigen Längsmuskelsystems; (d) Muskelmantel der Lemnisci; (l) Lemnisc; (k) Kern und (ka) Kanal derselben; (i. p. s.) innere, (ä. p. s.) äußere Hülle der Proboscisscheide; (s) Sarkolemm, (k. s.) kontraktile Substanz und (m. s.) Marks substanz der letzteren; (r) einer der Retraktoren des Rüssels.

3. *Echinorhynchus porrigens*. Querschnitt von der Halsregion. Sublimatfixierung. Hämatoxylinfärbung. 4 Hartnack. (s) Sarkolemm, (p. n.) Protoplasmanetz und (r. m. f.) Fibrillen der Ringsmuskel lage; (s') Sarkolemm, (lm) Fibrillen der äusseren Längsmuskellage und (g. b. u. s.) Sarkolemm derselben nebst Grenzmembran der Subcuticula; (r. f.) Radiärfasern der Subcuticula.

4. *Echinorhynchus porrigens*. Querschnitt durch einen Längsmuskel des Bulbus. Sublimatfixierung. Hämatoxylinfärbung. 3 Nachet. (s) Sarkolemm; (ko. s.) fibrilläre Substanz; (p. n.) Protoplasmanetz; (k) Kern mit Kernkörperchen; (z) Zweige des Längsmuskels.

5. *Echinorhynchus porrigens*. Vertikaler Längsschnitt durch die Wand des Hinterkörpers. Sublimatfixierung. Hämatoxylin- und Eosin-färbung. 3 Nachet. (c) Cuticula; (s) Subcuticula mit (s. k.) Kanal; (k) Kern und (x) innerste Lage derselben; (h. s.) homogene Schicht und Grenzmembran; (r. m. b.) Ringsmuskelband; (e. s.) eigentliches Sarkolemm; (m. b.) Muskelbeutel; (l. m.) Längsmuskel; (eb) zwischen den Beuteln gelegener Elball; (f. n.) Fibrillennetzwerk in der Basis der Beutel.

6. *Echinorhynchus turbinella*. Längsschnitt durch die Wand des Halses. In Perenyl's Flüssigkeit gehärtet. Hämatoxylinfärbung. 3 Nachet. (c) Cuticula; (s) kompakte, (s') lockere Theil der Subcuticula mit (s. k.) subcuticulärem Kanal; (ver.) Verenigungsbänd zwischen (gh) Grenzmembran und (e. s.) eigentlichem Sarkolemm; (h. s.) homogene Schicht; (r. m. b.) Rings muskelband; (l. m.) Längsmuskel.
Taf. II.

1. **Echinorhynchus turbinell.a.** Längsschnitt durch einen Haken des Bulbus. Sublimatfixierung. Haematoxylinfärbung. Nachet. (c, s, s', sk.) wie in vorhergehender Figur; (p) Pulpa; (gr. H.) Grundsubstanz des Hakens.

2. **Echinorhynchus turbinell.a.** Vertikaler Längsschnitt durch den Rüssel nebst Scheiden und vorderstem Theil des Bulbus. In Perenyi's Flüssigkeit gehärtet. Haematoxylinfärbung. Nachet. (s) Subcuticula; (h) Haken des Rüssels; (H) Haken des Bulbus; (l. s.) homogene Schicht und (s) Sarkollem der Hüllen der Proboscisscheide, Fortsetzung der homogenen Schicht; (r. m', r. m'') Ringsmuskellagen des Rüssels; (r. m) diejenige des Bulbus; (c. f.) Cuticulafalte; (x) vorderster Theil der inneren Hülle der Proboscisscheide; (g) Ganglion; (i. p. s.) innere, (ä. p. s.) äussere Hüllen der Proboscisscheide; (r) einer der Retraktoren des Rüssels; (d. R) dorsaler, (v. R) ventraler Retraktor der Proboscisscheide; (l) Ligamentum.

3. **Echinorhynchus turbinell.a.** Querschnitt durch den mittleren Abschnitt des Bulbus. Sublimatfixierung. Haematoxylinfärbung. Nachet. (s) Subcuticula; (k) Kanal und (h) Haken derselben; (l. m') dickwandiges und (l. m'') dünnwandiges Längsmuskelstystem; (L) Lemnisci; (p. p', p') äussere und innere Hülle der Proboscisscheide; (m) Retraktoren des Rüssels; (m. b.) Muskelnbeutel.

4. **Echinorhynchus turbinell.a.** Der Schluckapparat des Weibchens. In Perenyi's Flüssigkeit gehärtet. (l) Ligamentum; (G) Glocke; (st) Seiten tasche; (d) das peripherische, dorsale Zellenpaar; (u) Uterus.

5. **Echinorhynchus turbinell.a.** Querschnitt durch den Hals. Perenyi's Flüssigkeit. Haematoxylinfärbung. Nachet. (c) Cuticula; (s) kompakter, (s') lockerer Theil der Subcuticula mit (k) Kern; (h. s.) homogene Schicht; (r. m.) Ringsmuskellband; (m) von der homogenen Schicht ausgehende Scheidewand zwischen den Beuteln; (k') Muskelkern; (m. b.) Muskelnbeutel.

Taf. III.

5. **Echinorhynchus turbinell.a.** Querschnitte durch den Schluckapparat von vorn nach hinten gelegt. Perenyi's Flüssigkeit. Haematoxylinfärbung. (l) Ligamentum; (G) Glocke; (s. t.) Seitentasche; (a) axiale Zelle; (b, c.) die die Ei-
ERNST BORGSTRÖM, ÜBER ECHINORHYNCHUS TURB. BREV. U. PORRIG.

leiter bildenden Zellen: (d) dorsales Zelleupaar; (g. g.) Glockengrund; (d. oe.) dorsale Glockenöffnung.

Fig. 19. *Echinorhynchus turbinella*. Der männliche Geschlechtsapparat. Der hintere Abschnitt desselben auf Fig. 23. Doppelfärbung mit Hämatoxylin und Jodgrün. ¼ Nachet, seitdem vermindert. (t) Testes, (l. s.) Ligamentum suspensorium; (v. d.) Vas deferens; (v. e.) Vas efferens; (v. s.) Vesicula seminalis; (k) Kittdrüsen.

20. *Echinorhynchus brevicollis*. Querschnitt durch die mittlere Partie des Uterus. Weingeist; Hämatoxylinfärbung. ¼ Nachet. (s) Sarkolemm; (ä. r. m.) äußere, (irm) innere Ringsfibrillenlage; (p) Protoplasmanetz.

21. *Echinorhynchus brevicollis*. Querschnitt durch den hinteren Theil des Uterus. Weingeist. Hämatoxylinfärbung. ¼ Nachet. (s) Sarkolemm; (ä. r. m.) äußere, (irm) innere Ringsfibrillenlage; (r. f.) radiäre Fibrillen; (k) Kern; (p. n.) Protoplasmanetz des Kernes; (l) Längskanal; (tv. e.) Quergeschnittene Embryonen.

23. *Echinorhynchus turbinella*. Hinterer Abschnitt des männlichen Geschlechtsapparates. Färbung und Vergrößerung wie in Fig. 19. Halbschematische Figur. (k) Kittdrüsen; (ak) Ausführungsgänge derselben; (r. k.) Reservoir der Kittsubstanz; (v. e.) Vas efferens; (d. e.) Ductus ejaculatorius; (p) Penis; (m. s.) Genitalscheide; (m. b.) Muskelmarkbeutel; (b) Bursa copulatrix; (b. t.) Bursaltaschen.

Taf. IV.

Fig. 32, 33, 34, 35, 36, 37 und 38. *Echinorhynchus turbinella*. Querschnitte durch den männlichen Geschlechtsapparat von vorn nach hinten geführt. Perenyi's Flüssigkeit. Hämatoxylinfärbung. ¼ Nachet. (k) Kittdrüsen; (v. d.) Vasa deferentia; (m. b.) Muskelhülle derselben; (v. e.) Vas efferens; (a. k.) Ausführungsgänge der Kittdrüsen; (r. k.) Reservoir für die Kittsubstanz; (m. s.) Genitalscheide; (m. b.) Muskelmarkbeutel; (g. g.) Geschlechtsganglion; (1. m., 1. m." 1. m."') Längsmuskelbündel.

Bihang till K. sv. vet.-akad. handl. Band 17, Afd. IV. no 10. 59

(l. m.) innere Muskellage; (m. fl.) Muskelflüssigkeit. Übrige Bezeichnungen wie vorher.

Fig. 40. *Echinorhynchus turbinella*. Querschnitt der Bursa. Perenyi's Flüssigkeit. Hæmatoxylinfärbung. Nachet. (s) Subcuticula; (p) Papille; (r. m., r. m.'.) Ringsfibrillenlagen; (l. m.) Längsmuskellage; (f.) radiäre Fibrillen; (t. t.) Bursaltaschen.

42. *Echinorhynchus porrigens*. Querschnitt durch das vordere Ende des dorsalen Retraktors der Proboscisscheide. Sublimatfixierung. Hæmatoxylinfärbung. Nachet. (l) Ligament; (k) Kerne desselben; (s) Sarkolemm; (k. s.) fibrilläre Substanz; (p. n.) Protoplasmanetz; (s) Subcuticula; (s. k.) Hauptkanäle derselben; (r. m.) Eingemuskelfibrillen; (mb) Muskelbeutel, (m. k.) Kern desselben; (Ro) seitliches Rohr, der Beutellage zugehörend; (l. m.) Längsmuskeln.

Taf. V.

Fig. 44. Querschnitt durch den Hinterkörper des *Echinorhynchus turbinella*. Die Geschlechtsorgane sind nicht gezeichnet. Die Subcuticula ist nur angedeutet. In Weingeist gehärtet. Hæmatoxylinfärbung. (s) Subcuticula, (s. k.) Hauptkanäle derselben; (r. m.) Ringsmuskelfibrillen; (mb) Muskelbeutel, (m. k.) Kern desselben; (Ro) seitliches Rohr, der Beutellage zugehörend; (l. m.) Längsmuskeln.

45. Die männlichen Geschlechtsorgane des *Echinorhynchus porrigens* zweimal vergrößert. Sublimatfixierung. (l) Ligamentum; (t) Testes; (Kl. v.) Kittdrüsen und Vasa deferentia; (m. s.) Genitalscheide; (Ha) ein Stück der Haut, das die Geschlechtsöffnung umgeht; (b) die ausgestülpte Bursa.

46. *Echinorhynchus turbinella*. Schluckapparat, Uterus und Vagina. In Perenyi's Flüssigkeit gehärtet. Siebzehn Mal vergrößert. (l) Ligamentum; (g) Glocke; (s. t.) Seitentasche; (d) dorsale Zelle; (u) Uterus; (v) Vagina mit Sphinctern.

¹ Die Photographien verdanke ich meinem freund Cand. phil. L. Jägerskiöld.

Fig. 51, 52, 53 und 54. *Echinorhynchus turbinella*. Ausgewachsene Individuen. In Perenyi's Flüssigkeit gehärtet. Fig. 51 und 54 sind Weibchen, 52 und 53 Männchen. Nat. Größe. Nach Photographie.

Lars Ljunggren (fig 7 & 8) & Ernst Bergström (ext.) delin.

Lith W. Schlachter, Stockholm.